Laboratory of Food Process Engineering, Wageningen University, P.O. Box 17, Bornse Weilanden, 9, 6708 WG Wageningen, the Netherlands.
Laboratory of Food Process Engineering, Wageningen University, P.O. Box 17, Bornse Weilanden, 9, 6708 WG Wageningen, the Netherlands; INRAE, BIA, 44000 Nantes, France.
Food Res Int. 2023 Feb;164:112365. doi: 10.1016/j.foodres.2022.112365. Epub 2022 Dec 28.
Microfluidic emulsification has the potential to produce emulsions with very controlled droplet sizes in a subtle manner. To support in unleashing this potential, we provide guidelines regarding upscaling based on the performance of Upscale Partitioned EDGE (UPE) devices, using rapeseed oil as the to-be-dispersed phase and whey proteins as the emulsifier. The UPE device (11,000 droplet formation units (DFUs) of 5 × 1 µm) produced 3.5-µm droplets (CV 3.2 %) at 0.3 mL/h; UPE (8,000 DFUs of 10 × 2 µm) produced 7-µm droplets (CV 3.2 %) at 0.5 mL/h, and at higher pressures, 32-µm droplets (CV 3-4 %) at 4 mL/h. These productivities are relatively high compared to those of other devices reported in literature (e.g., Microchannel, Tsukuba and Millipede, Harvard). Based on these results, and on others from literature, we conclude that: (1) the continuous phase channel dimensions need to be chosen such that they allow for gradual filling of this channel with droplets without decreasing the pressure over the droplet formation units significantly; (2) the dispersed phase supply channel design should create a wide stable droplet formation pressure range to increase productivity; and (3) higher productivities can be obtained through the choice of the ingredients used; low viscosity dispersed phase and an emulsifier that increases the interfacial tension without negatively affecting device wettability is preferred (e.g., whey protein outperforms Tween 20). These results and design guidelines are expected to contribute to the first food emulsion products prepared with microfluidics.
微流控乳化技术具有以微妙的方式产生具有非常受控的液滴尺寸的乳液的潜力。为了支持释放这种潜力,我们根据 Upscale Partitioned EDGE (UPE) 设备的性能提供了关于放大的指南,使用菜籽油作为待分散相和乳清蛋白作为乳化剂。UPE 设备(11000 个 5×1μm 的液滴形成单元 (DFU))以 0.3mL/h 的流速产生 3.5μm 的液滴(CV3.2%);UPE(8000 个 10×2μm 的 DFU)以 0.5mL/h 的流速产生 7μm 的液滴(CV3.2%),并且在更高的压力下,以 4mL/h 的流速产生 32μm 的液滴(CV3-4%)。与文献中报道的其他设备(例如 Microchannel、Tsukuba 和 Millipede、Harvard)相比,这些生产率相对较高。基于这些结果以及文献中的其他结果,我们得出结论:(1)连续相通道尺寸需要选择得使它们允许液滴逐渐充满通道,而不会显著降低液滴形成单元上的压力;(2)分散相供应通道设计应创建一个宽的稳定的液滴形成压力范围,以提高生产率;(3)通过选择使用的成分可以获得更高的生产率;低粘度分散相和增加界面张力而不负面影响设备润湿性的乳化剂是优选的(例如,乳清蛋白优于 Tween 20)。这些结果和设计指南有望为使用微流控技术制备的第一批食品乳液产品做出贡献。