College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Adv Mater. 2023 Apr;35(16):e2209768. doi: 10.1002/adma.202209768. Epub 2023 Mar 12.
Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported. The MOST fabric, which can co-harvest solar and thermal energy, achieves efficient photocharging and photo-discharging (>90% photoconversion), a high energy density of 2.5 kJ m , and long-term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy-storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy-storage performance and robustness in PTM.
分子太阳能热(MOST)材料能够高效地捕获太阳能,并按需将其释放为热能,是未来个人热管理(PTM)应用的有前途的候选材料,最好是织物形式。然而,由于分子材料的能量密度低以及它们从织物中泄漏,开发具有高储能能力和稳定工作性能的 MOST 织物仍然是一个重大挑战。在这里,报道了一种使用含有偶氮吡唑的微胶囊和深紫外滤光壳的高效、稳健的 MOST 织物用于 PTM。这种 MOST 织物可以共收获太阳能和热能,实现高效光电充电和放电(>90%的光转化率)、2.5kJ/m 的高能量密度以及在月尺度上的长期存储可持续性。此外,它可以经受多次洗涤、摩擦和再充电循环,而不会显著损失储能容量。这种 MOST 微胶囊策略易于用于可扩展生产用于太阳能热灸的 MOST 织物。这一成就为在 PTM 中应用具有高储能性能和稳健性的可穿戴 MOST 材料提供了一条有前途的途径。