Suppr超能文献

基于 LCM 模型的拉田坝流域(伊朗)半干旱地区土地利用/覆被变化模拟。

Modeling land use/cover change based on LCM model for a semi-arid area in the Latian Dam Watershed (Iran).

机构信息

Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.

Department of Environmental Design, Tehran University, Tehran, Iran.

出版信息

Environ Monit Assess. 2023 Feb 4;195(3):363. doi: 10.1007/s10661-022-10876-1.

Abstract

The monitoring and modeling of changes, based on a time-series LULC approach, is fundamental for planning and managing regional environments. The current study analyzed the LULC changes as well as estimated future scenarios for 2027 and 2037. To achieve accuracy in predicting LULC changes, the Land Change Modeler (LCM) was used for the Latian Dam Watershed, which is located approximately in the northeast of Tehran. The LULC time-series technique was specified utilizing four atmospherically endorsed surface reflectance Landsat images for the years t (1987), t (1998), t (2007), and t (2017) to authenticate the LULC predictions, so to obtain estimates for t (2027) and t (2037). The LULC classes identified in the watershed were water bodies, build-up areas, vegetated areas, and bare lands. The dynamic modeling of the LULC was based on a multi-layer perceptron (MLP), the neural network in LCM, which presented good results with an average accuracy rate equivalent to 84.89 percent. The results of the LULC change analysis showed an increase in the build-up area and a decrease in bare lands and vegetated areas within the duration of the study period. The results of this research could help in the formulation of public policies designed to conserve environmental resources in the Latian Dam Watershed and, consequently, minimize the risks of the fragmentation of orchards and vegetated areas. Also, careful regional planning ensuring the preservation of natural landscapes and open spaces is critical to creating a resilient regional environment and sustainable development.

摘要

基于时间序列土地利用/覆被变化(LULC)方法的监测和建模对于规划和管理区域环境至关重要。本研究分析了土地利用/覆被变化,并对 2027 年和 2037 年的未来情景进行了预测。为了提高土地利用/覆被变化预测的准确性,使用土地变化模型器(LCM)对位于德黑兰东北部附近的拉蒂安大坝流域进行了分析。利用经过大气校正的 4 幅地表反射 Landsat 影像,对 1987 年(t)、1998 年(t)、2007 年(t)和 2017 年(t)的土地利用/覆被时间序列技术进行了指定,以验证土地利用/覆被预测结果,并对 2027 年(t)和 2037 年(t)进行了预测。在流域内识别的土地利用/覆被类型有水体、建设用地、植被区和裸地区。土地利用/覆被的动态建模是基于 LCM 中的多层感知器(MLP)神经网络,其平均准确率达到 84.89%,效果良好。土地利用/覆被变化分析的结果表明,在研究期间,建设用地面积增加,裸地区和植被区面积减少。本研究的结果可以帮助制定旨在保护拉蒂安大坝流域环境资源的公共政策,从而最大限度地减少果园和植被区碎片化的风险。此外,确保自然景观和开放空间的区域规划对于创造有弹性的区域环境和可持续发展至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验