Suppr超能文献

使用拉普拉斯先验的贝叶斯多变量精细定位。

Bayesian multivariant fine mapping using the Laplace prior.

作者信息

Walters Kevin, Yaacob Hannuun

机构信息

School of Mathematics and Statistics, University of Sheffield, Sheffield, UK.

Department of Economics and Applied Statistics, Faculty of Business and Economics, Universiti Malaya, Kuala Lumpur, Malaysia.

出版信息

Genet Epidemiol. 2023 Apr;47(3):249-260. doi: 10.1002/gepi.22517. Epub 2023 Feb 5.

Abstract

Currently, the only effect size prior that is routinely implemented in a Bayesian fine-mapping multi-single-nucleotide polymorphism (SNP) analysis is the Gaussian prior. Here, we show how the Laplace prior can be deployed in Bayesian multi-SNP fine mapping studies. We compare the ranking performance of the posterior inclusion probability (PIP) using a Laplace prior with the ranking performance of the corresponding Gaussian prior and FINEMAP. Our results indicate that, for the simulation scenarios we consider here, the Laplace prior can lead to higher PIPs than either the Gaussian prior or FINEMAP, particularly for moderately sized fine-mapping studies. The Laplace prior also appears to have better worst-case scenario properties. We reanalyse the iCOGS case-control data from the CASP8 region on Chromosome 2. Even though this study has a total sample size of nearly 90,000 individuals, there are still some differences in the top few ranked SNPs if the Laplace prior is used rather than the Gaussian prior. R code to implement the Laplace (and Gaussian) prior is available at https://github.com/Kevin-walters/lapmapr.

摘要

目前,在贝叶斯精细定位多单核苷酸多态性(SNP)分析中常规使用的唯一效应量先验是高斯先验。在此,我们展示了拉普拉斯先验如何应用于贝叶斯多SNP精细定位研究。我们比较了使用拉普拉斯先验时后验包含概率(PIP)的排序性能与相应高斯先验和FINEMAP的排序性能。我们的结果表明,对于我们在此考虑的模拟场景,拉普拉斯先验可比高斯先验或FINEMAP产生更高的PIP,特别是对于中等规模的精细定位研究。拉普拉斯先验在最坏情况场景下似乎也具有更好的性质。我们重新分析了来自2号染色体上CASP8区域的iCOGS病例对照数据。尽管这项研究的总样本量接近90000人,但如果使用拉普拉斯先验而非高斯先验,在前几个排名靠前的SNP中仍存在一些差异。实现拉普拉斯(和高斯)先验的R代码可在https://github.com/Kevin-walters/lapmapr获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验