State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
Pestic Biochem Physiol. 2023 Feb;190:105311. doi: 10.1016/j.pestbp.2022.105311. Epub 2022 Dec 5.
The calcium-calcineurin and high-osmolarity glycerol (HOG) pathways play crucial roles in fungal development, pathogenicity, and in responses to various environmental stresses. However, interaction of these pathways in regulating fungicide sensitivity remains largely unknown in phytopathogenic fungi. In this study, we investigated the function of the calcium-calcineurin signalling pathway in Fusarium graminearum, the causal agent of Fusarium head blight. Inhibitors of Ca and calcineurin enhanced antifungal activity of tebuconazole (an azole fungicide) against F. graminearum. Deletion of the putative downstream transcription factor FgCrz1 resulted in significantly increased sensitivity of F. graminearum to tebuconazole. FgCrz1-GFP was translocated to the nucleus upon tebuconazole treatment in a calcineurin-dependent manner. In addition, deletion of FgCrz1 increased the phosphorylation of FgHog1 in response to tebuconazole. Moreover, the calcium-calcineurin and HOG signalling pathways exhibited synergistic effect in regulating pathogenicity and sensitivity of F. graminearum to tebuconazole and multiple other stresses. RNA-seq data revealed that FgCrz1 regulated expression of a set of non-CYP51 genes that are associated with tebuconazole sensitivity, including multidrug transporters, membrane lipid biosynthesis and metabolism, and cell wall organization. Our findings demonstrate that the calcium-calcineurin and HOG pathways act coordinately to orchestrate tebuconazole sensitivity and pathogenicity in F. graminearum, which may provide novel insights in management of Fusarium disease.
钙调神经磷酸酶和高渗甘油(HOG)途径在真菌的发育、致病性以及对各种环境胁迫的反应中起着至关重要的作用。然而,这些途径在调节植物病原真菌中杀菌剂敏感性的相互作用在很大程度上仍然未知。在这项研究中,我们研究了钙调神经磷酸酶信号通路在禾谷镰刀菌(引起赤霉病的病原体)中的功能。钙和钙调神经磷酸酶的抑制剂增强了唑菌酯(一种唑类杀菌剂)对禾谷镰刀菌的抗真菌活性。假定的下游转录因子 FgCrz1 的缺失导致禾谷镰刀菌对唑菌酯的敏感性显著增加。FgCrz1-GFP 在钙调神经磷酸酶依赖性方式下被转运到细胞核中。此外,FgCrz1 的缺失增加了 FgHog1 在唑菌酯作用下的磷酸化。此外,钙调神经磷酸酶和 HOG 信号通路在调节禾谷镰刀菌对唑菌酯和多种其他胁迫的致病性和敏感性方面表现出协同作用。RNA-seq 数据显示,FgCrz1 调节一组与唑菌酯敏感性相关的非 CYP51 基因的表达,包括多药转运蛋白、膜脂生物合成和代谢以及细胞壁组织。我们的研究结果表明,钙调神经磷酸酶和 HOG 途径协同作用,协调唑菌酯敏感性和禾谷镰刀菌的致病性,这可能为赤霉病的管理提供新的见解。