Suppr超能文献

迈向……的温室栽培:发光二极管在调节植物生长和次生代谢中的应用 (注:原文Towards greenhouse cultivation of后面似乎缺失了具体内容)

Towards greenhouse cultivation of : The application of LEDs in regulating plant growth and secondary metabolism.

作者信息

Zhang Ningyi, Yang Haohong, Han Tianqi, Kim Hyoung Seok, Marcelis Leo F M

机构信息

Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands.

Smart Farm Convergence Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea.

出版信息

Front Plant Sci. 2023 Jan 18;13:1099713. doi: 10.3389/fpls.2022.1099713. eCollection 2022.

Abstract

Artemisinin is a sesquiterpene lactone produced in glandular trichomes of , and is extensively used in the treatment of malaria. Growth and secondary metabolism of are strongly regulated by environmental conditions, causing unstable supply and quality of raw materials from field grown plants. This study aimed to bring into greenhouse cultivation and to increase artemisinin production by manipulating greenhouse light environment using LEDs. plants were grown in a greenhouse compartment for five weeks in vegetative stage with either supplemental photosynthetically active radiation (PAR) (blue, green, red or white) or supplemental radiation outside PAR wavelength (far-red, UV-B or both). The colour of supplemental PAR hardly affected plant morphology and biomass, except that supplemental green decreased plant biomass by 15% (both fresh and dry mass) compared to supplemental white. Supplemental far-red increased final plant height by 23% whereas it decreased leaf area, plant fresh and dry weight by 30%, 17% and 7%, respectively, compared to the treatment without supplemental radiation. Supplemental UV-B decreased plant leaf area and dry weight (both by 7%). Interestingly, supplemental green and UV-B increased leaf glandular trichome density by 11% and 9%, respectively. However, concentrations of artemisinin, arteannuin B, dihydroartemisinic acid and artemisinic acid only exhibited marginal differences between the light treatments. There were no interactive effects of far-red and UV-B on plant biomass, morphology, trichome density and secondary metabolite concentrations. Our results illustrate the potential of applying light treatments in greenhouse production of to increase trichome density in vegetative stage. However, the trade-off between light effects on plant growth and trichome initiation needs to be considered. Moreover, the underlying mechanisms of light spectrum regulation on artemisinin biosynthesis need further clarification to enhance artemisinin yield in greenhouse production of .

摘要

青蒿素是一种在[植物名称]的腺毛中产生的倍半萜内酯,被广泛用于治疗疟疾。[植物名称]的生长和次生代谢受到环境条件的强烈调节,导致田间种植植物的原材料供应和质量不稳定。本研究旨在将[植物名称]引入温室栽培,并通过使用发光二极管(LED)操纵温室光照环境来提高青蒿素产量。[植物名称]植株在温室隔间中生长五周,处于营养生长阶段,分别接受补充光合有效辐射(PAR)(蓝色、绿色、红色或白色)或PAR波长以外的补充辐射(远红光、UV-B或两者)。补充PAR的颜色对植物形态和生物量影响不大,只是与补充白光相比,补充绿光使植物生物量(鲜重和干重)降低了15%。与无补充辐射处理相比,补充远红光使最终株高增加了23%,而叶面积、植物鲜重和干重分别降低了30%、17%和7%。补充UV-B使植物叶面积和干重(均降低7%)。有趣的是,补充绿光和UV-B分别使叶腺毛密度增加了11%和9%。然而,青蒿素、青蒿琥酯B、二氢青蒿酸和青蒿酸的浓度在光照处理之间仅表现出微小差异。远红光和UV-B对植物生物量、形态、毛状体密度和次生代谢物浓度没有交互作用。我们的结果表明,在[植物名称]的温室生产中应用光照处理以增加营养生长阶段毛状体密度具有潜力。然而,需要考虑光照对植物生长和毛状体起始影响之间的权衡。此外,光谱调控青蒿素生物合成的潜在机制需要进一步阐明,以提高[植物名称]温室生产中的青蒿素产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b8f/9889874/a8b8602e2222/fpls-13-1099713-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验