Suppr超能文献

人类肥厚型心肌病中钙处理减缓与肌球蛋白交联循环加快之间的平衡。

Slower Calcium Handling Balances Faster Cross-Bridge Cycling in Human HCM.

机构信息

Department of Clinical and Experimental Medicine, Division of Physiology (J.M.P., G.V., M.L., N.P., B.S., C.T., C.F., C. Poggesi), University of Florence, Italy.

Department of Biology (J.M.P.), University of Florence, Italy.

出版信息

Circ Res. 2023 Mar 3;132(5):628-644. doi: 10.1161/CIRCRESAHA.122.321956. Epub 2023 Feb 6.

Abstract

BACKGROUND

The pathogenesis of -associated hypertrophic cardiomyopathy (HCM) is still unresolved. In our HCM patient cohort, a large and well-characterized population carrying the :c772G>A variant (p.Glu258Lys, E258K) provides the unique opportunity to study the basic mechanisms of -HCM with a comprehensive translational approach.

METHODS

We collected clinical and genetic data from 93 HCM patients carrying the :c772G>A variant. Functional perturbations were investigated using different biophysical techniques in left ventricular samples from 4 patients who underwent myectomy for refractory outflow obstruction, compared with samples from non-failing non-hypertrophic surgical patients and healthy donors. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and engineered heart tissues (EHTs) were also investigated.

RESULTS

Haplotype analysis revealed :c772G>A as a founder mutation in Tuscany. In ventricular myocardium, the mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-EHTs revealed prolonged action potentials, slower Ca transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations.

CONCLUSIONS

HCM-related :c772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.

摘要

背景

-相关肥厚型心肌病(HCM)的发病机制仍未解决。在我们的 HCM 患者队列中,携带大量经过充分特征描述的:c772G>A 变异(p.Glu258Lys,E258K)的患者为使用全面的转化方法研究 -HCM 的基本机制提供了独特的机会。

方法

我们收集了 93 名携带:c772G>A 变异的 HCM 患者的临床和遗传数据。在 4 名因流出道梗阻而接受心肌切除术的难治性患者的左心室样本中,与非衰竭性非肥厚性手术患者和健康供体的样本相比,使用不同的生物物理技术研究了功能障碍。还研究了人诱导多能干细胞(hiPSC)衍生的心肌细胞和工程心脏组织(EHT)。

结果

单体型分析表明:c772G>A 是托斯卡纳的一个创始突变。在心室心肌中,该突变导致 cMyBP-C(心肌肌球蛋白结合蛋白-C)表达减少,支持杂合不足是主要的主要疾病机制。在单个肌原纤维和透化肌条上的力学研究突出了更快的横桥循环和更高的张力产生能量成本。一种基于组织清除和先进光学显微镜的新方法支持这样的想法,即肌节能量功能障碍与 cMyBP-C 的减少有关。在单个心肌细胞(天然和 hiPSC 衍生)、完整的小梁和 hiPSC-EHT 中的研究揭示了动作电位延长、Ca 瞬变减慢和收缩持续时间保留,表明较慢的兴奋-收缩偶联平衡了更快的肌节动力学。计算机模拟加强了这一结论。

结论

与 HCM 相关的:c772G>A 突变始终会损害肌节能量和横桥循环。补偿性电生理变化(例如,钾通道表达减少)似乎可以保留抽搐收缩参数,但可能使患者更容易发生心律失常倾向和疾病进展。纠正主要肌节缺陷的治疗方法可能会防止继发性心肌细胞重塑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a211/9977265/33962b1f1178/res-132-628-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验