Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8128-8137. doi: 10.1021/acsami.2c20884. Epub 2023 Feb 6.
Solid polymer electrolytes (SPEs) are considered to be attractive candidates for rechargeable batteries on account of their high safety and flexible processability. However, the restricted polymer segmental dynamics limit the Li conduction of SPEs. Herein, a composite electrolyte membrane was prepared via in situ thermal-initiating polymerization of diethylene glycol diacrylate (DEGDA) in a poly(vinylidene fluoride) frameworks (PVDF FMs) electrospun in advance. As a quasi-solid polymer electrolyte (QSPE), it provides multiple transport highways for Li built by the C═O or C-O or C═O/C-O groups in poly(diethylene glycol) diacrylate (PDEGDA), respectively, proved by density functional theory calculations together with the high-resolution Li solid-state nuclear magnetic resonance spectra. Since the interaction between Li and C═O is weaker than that between Li and C-O, Li tends to move along C═O dominating paths in PDEGDA/PVDF FMs QSPEs, even skipping back to C═O nodes from the original C-O dominating way. Multiple transport patterns facilitate Li migration within PDEGDA/PVDF FMs QSPEs, contributing to the ionic conductivity of 1.41 × 10 S cm at 25 °C and the Li transference number of 0.454. Ascribing to the wetting capability of the monomer to the electrodes in use, compatible electrolyte/electrode interfaces with low interface resistance and compact cells were acquired by the in situ polymerization. Protective lithiated oligomers (RCOOLi) and LiF are enriched at the Li anode surface, promoting a lasting stable Li plating/stripping over 2000 h. By applying the QSPEs in LiFePO cell, a capacity of 157.7 mAh g with almost 100% coulombic efficiency during 200 cycles is achieved at 25 °C.
固态聚合物电解质 (SPE) 因其高安全性和可灵活加工性而被认为是可再充电电池的有吸引力的候选者。然而,受限的聚合物链段动力学限制了 SPE 中的 Li 传导。在此,通过在预先电纺的聚偏二氟乙烯 (PVDF) 纤维支架 (PVDF FMs) 中就地引发二甘醇二丙烯酸酯 (DEGDA) 的热聚合制备复合电解质膜。作为准固态聚合物电解质 (QSPE),它通过密度泛函理论计算和高分辨率 Li 固态核磁共振谱证明,由聚 (二乙二醇) 二丙烯酸酯 (PDEGDA) 中的 C═O 或 C-O 或 C═O/C-O 基团分别为 Li 提供了多个传输高速公路。由于 Li 与 C═O 的相互作用弱于 Li 与 C-O 的相互作用,因此 Li 倾向于沿 PDEGDA/PVDF FMs QSPE 中的 C═O 主导路径移动,即使从原始 C-O 主导路径跳回 C═O 节点。多种传输模式有利于 Li 在 PDEGDA/PVDF FMs QSPE 中的迁移,有助于在 25°C 时达到 1.41×10 S cm 的离子电导率和 0.454 的 Li 迁移数。归因于单体对使用中的电极的润湿性,通过原位聚合获得了具有低界面电阻和紧凑电池的兼容电解质/电极界面。在 Li 阳极表面富集了保护性锂化低聚物 (RCOOLi) 和 LiF,促进了 2000 小时以上的稳定 Li 电镀/剥离。在 LiFePO 电池中应用 QSPE 时,在 25°C 下循环 200 次后,可获得 157.7 mAh g 的容量,且库仑效率接近 100%。