Suppr超能文献

通过生态位建模和微气候数据预测每日活动时间。

Predicting daily activity time through ecological niche modelling and microclimatic data.

作者信息

Toro-Cardona Felipe A, Parra Juan L, Rojas-Soto Octavio R

机构信息

Laboratorio de Bioclimatología, Red de Biología Evolutiva, Instituto de Ecología, A. C. Xalapa, Veracruz, Mexico.

Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia.

出版信息

J Anim Ecol. 2023 Apr;92(4):925-935. doi: 10.1111/1365-2656.13895. Epub 2023 Mar 17.

Abstract

Climate temporality is a phenomenon that affects species activity and distribution patterns across spatial and temporal scales. Despite the global availability of microclimatic data, their use to predict activity patterns and distributions remains scarce, particularly at fine temporal scales (e.g. < month). Predicting activity patterns based on climatic data may allow us to foresee some of the consequences of climate change, particularly for ectothermic vertebrates. The Gila monster exhibits marked daily and seasonal activity patterns linked to physiology and reproduction. Here we evaluate whether ecological niche models fitted using microclimate data can predict temporal activity patterns using the Gila monster Heloderma suspectum as a study system. Furthermore, we identified whether the activity patterns are related to physiological constraints. We used dated occurrences from museum specimens and human observations to generate and test ecological niche models using minimum volume ellipsoids. We generated hourly microclimatic data for each occurrence site for 10 years using the NicheMapR package. For ecological niche modelling, we compared the traditional seasonal approach versus a daily activity pattern strategy for model construction. We tested both using the omission rate of independent observations (citizen science data). Finally, we tested whether unimodal and bimodal activity patterns for each season could be recreated through ecological niche modelling and whether these patterns followed known physiological constraints. The unimodal and bimodal activity patterns previously reported directly from tracking individuals across the year were recovered using niche modelling and microclimate across the species' geographical range. We found that upper thermal tolerances can explain the daily activity patterns of this species. We conclude that ecological niche models trained with microclimatic data can be used to predict activity patterns at high temporal resolutions, particularly on ectotherm species of arid zones coping with rapid climate modifications. Furthermore, the use of high temporal resolution variables can lead to a better niche delimitation, enhancing the results of any research objective that uses correlative models.

摘要

气候时间性是一种在空间和时间尺度上影响物种活动和分布模式的现象。尽管全球都可获取微气候数据,但利用这些数据来预测活动模式和分布的情况仍然很少,尤其是在精细的时间尺度上(例如<月)。基于气候数据预测活动模式可能使我们能够预见气候变化的一些后果,特别是对于变温脊椎动物而言。吉拉毒蜥表现出与生理和繁殖相关的明显的每日和季节性活动模式。在此,我们以吉拉毒蜥(Heloderma suspectum)作为研究系统,评估使用微气候数据拟合的生态位模型是否能够预测时间活动模式。此外,我们确定了活动模式是否与生理限制有关。我们利用博物馆标本和人类观察的日期记录,使用最小体积椭球体来生成和测试生态位模型。我们使用NicheMapR软件包为每个出现地点生成了10年的每小时微气候数据。对于生态位建模,我们比较了传统的季节性方法与用于模型构建的每日活动模式策略。我们使用独立观测(公民科学数据)的遗漏率对两者进行了测试。最后,我们测试了是否可以通过生态位建模重现每个季节的单峰和双峰活动模式,以及这些模式是否遵循已知的生理限制。利用生态位建模和整个物种地理范围内的微气候,我们恢复了之前通过全年追踪个体直接报告的单峰和双峰活动模式。我们发现较高的热耐受性可以解释该物种的每日活动模式。我们得出结论,用微气候数据训练的生态位模型可用于预测高时间分辨率下的活动模式,特别是对于应对快速气候变化的干旱地区变温物种。此外,使用高时间分辨率变量可以更好地界定生态位,提高任何使用相关模型的研究目标的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验