Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France.
ENSCR, UMR 6226 (UL-CNRS) École Nationale Supérieure de Chimie de Rennes, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France.
J Phys Chem A. 2023 Feb 16;127(6):1547-1554. doi: 10.1021/acs.jpca.2c06955. Epub 2023 Feb 6.
Exploring magnetic properties at the molecular level is a challenge that has been met by developing many experimental and theoretical solutions, such as polarized neutron diffraction (PND), muon-spin rotation (μ-SR), electron paramagnetic resonance (EPR), SQUID-based magnetometry measurements, and advanced modeling on open-shell systems and relativistic calculations. These methods are powerful tools that shed light on the local magnetic response in specifically designed magnetic materials such as contrast agents, for MRI, molecular magnets, magnetic tags for biological NMR, etc. All of these methods have their advantages and disadvantages. In order to complement the possibilities offered by these methods, we propose a new tool that implements a new approach combining simulation and fitting for high-resolution solid-state NMR spectra of lanthanide-based paramagnetic species. This method relies on a rigorous acquisition thanks to short high-power adiabatic pulses (SHAP) of high-resolution solid-state NMR isotropic and anisotropic data on a powdered magnetic material. It is also based on an efficient modeling of this data thanks to a semiempirical model based on a parametrization of the local magnetism and the crystal structure provided by diffraction methods. The efficiency of the calculation relies on a thorough simplification of the electron-nucleus interactions (point-dipole interaction, no Fermi contact) which is validated by experimental analysis. By taking advantage of the efficient calculation possibilities offered by our method, we can compare a great number of simulated spectra to experimental data and find the best-matching local magnetic susceptibility tensor. This method was applied to a series of isostructural lanthanide oxalates which are used as a benchmark system for many analytical methods. We present the results of thorough solid-state NMR and extensive modeling of the hyperfine interaction (including up to 400 paramagnetic centers) that yield local magnetic susceptibility tensor measurements that are self-consistent as well as consistent with bulk susceptibility measurements.
探索分子水平的磁性是一个挑战,为此已经开发了许多实验和理论解决方案,例如极化中子衍射(PND)、μ-自旋旋转(μ-SR)、电子顺磁共振(EPR)、基于超导量子干涉仪(SQUID)的磁强计测量以及对开壳层系统和相对论计算的高级建模。这些方法是强大的工具,可以揭示特定设计的磁性材料(例如磁共振成像对比剂、分子磁体、用于生物 NMR 的磁性标签等)中的局部磁响应。所有这些方法都有其优点和缺点。为了补充这些方法提供的可能性,我们提出了一种新的工具,该工具结合了模拟和拟合,用于基于镧系元素的顺磁物种的高分辨率固态 NMR 光谱。该方法依赖于短的高功率绝热脉冲(SHAP)的高分辨率固态 NMR 各向同性和各向异性数据的严格采集,这些数据是对粉末状磁性材料进行采集的。它还基于一种有效的模型,该模型基于基于局部磁性和晶体结构的参数化的半经验模型,该模型由衍射方法提供。计算的效率依赖于电子-核相互作用的彻底简化(点偶极子相互作用,无费米接触),通过实验分析验证了这种简化的有效性。通过利用我们方法提供的高效计算可能性,我们可以将大量模拟光谱与实验数据进行比较,并找到最佳匹配的局部磁导率张量。该方法应用于一系列同构的镧系草酸盐,这些草酸盐被用作许多分析方法的基准系统。我们展示了固态 NMR 的详尽结果和超精细相互作用的广泛建模(包括多达 400 个顺磁中心),这些结果产生了一致的局部磁导率张量测量结果,并且与体磁导率测量结果一致。