Suppr超能文献

确保用于高维数据分析的全谱流式细胞术数据质量。

Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional Data Analysis.

作者信息

Ferrer-Font Laura, Kraker Geoffrey, Hally Kathryn E, Price Kylie M

机构信息

Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand.

Dotmatics, Boston, Massachusetts.

出版信息

Curr Protoc. 2023 Feb;3(2):e657. doi: 10.1002/cpz1.657.

Abstract

Full spectrum flow cytometry (FSFC) allows for the analysis of more than 40 parameters at the single-cell level. Compared to the practice of manual gating, high-dimensional data analysis can be used to fully explore single-cell datasets and reduce analysis time. As panel size and complexity increases so too does the detail and time required to prepare and validate the quality of the resulting data for use in downstream high-dimensional data analyses. To ensure data analysis algorithms can be used efficiently and to avoid artifacts, some important steps should be considered. These include data cleaning (such as eliminating variable signal change over time, removing cell doublets, and antibody aggregates), proper unmixing of full spectrum data, ensuring correct scale transformation, and correcting for batch effects. We have developed a methodical step-by-step protocol to prepare full spectrum high-dimensional data for use with high-dimensional data analyses, with a focus on visualizing the impact of each step of data preparation using dimensionality reduction algorithms. Application of our workflow will aid FSFC users in their efforts to apply quality control methods to their datasets for use in high-dimensional analysis, and help them to obtain valid and reproducible results. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Data cleaning Basic Protocol 2: Validating the quality of unmixing Basic Protocol 3: Data scaling Basic Protocol 4: Batch-to-batch normalization.

摘要

全谱流式细胞术(FSFC)能够在单细胞水平上分析40多个参数。与手动设门的做法相比,高维数据分析可用于全面探索单细胞数据集并减少分析时间。随着抗体组合规模和复杂性的增加,为下游高维数据分析准备和验证所得数据质量所需的细节和时间也会增加。为确保高效使用数据分析算法并避免出现伪影,应考虑一些重要步骤。这些步骤包括数据清理(例如消除随时间变化的可变信号、去除细胞双联体和抗体聚集体)、全谱数据的正确解混、确保正确的尺度转换以及校正批次效应。我们已开发出一种循序渐进的方法来准备用于高维数据分析的全谱高维数据,重点是使用降维算法可视化数据准备每个步骤的影响。应用我们的工作流程将有助于FSFC用户对其数据集应用质量控制方法以用于高维分析,并帮助他们获得有效且可重复的结果。© 2023威利期刊有限责任公司。基本方案1:数据清理 基本方案2:验证解混质量 基本方案3:数据缩放 基本方案4:批次间归一化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验