Zhang Jie, Shi Heng, Huang Chen, Mei Le, Guo Qiang, Cheng Ke, Wu Pingzhou, Su Dan, Chen Qingxin, Gan Shenglong, Wing Chan Cecilia Ka, Shi Jiahai, Chen Jian Lin, Jonathan Choi Chung Hang, Yao Shao Q, Chen Xian-Kai, Tang Ben Zhong, He Jufang, Sun Hongyan
Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, 999077, China.
ACS Nano. 2023 Feb 28;17(4):3632-3644. doi: 10.1021/acsnano.2c10467. Epub 2023 Feb 6.
Super-resolution imaging provides a powerful approach to image dynamic biomolecule events at nanoscale resolution. An ingenious method involving tuning intramolecular spirocyclization in rhodamine offers an appealing strategy to design cell-permeable fluorogenic probes for super-resolution imaging. Nevertheless, precise control of rhodamine spirocyclization presents a significant challenge. Through detailed study of the structure-activity relationship, we identified that multiple key factors control rhodamime spirocyclization. The findings provide opportunities to create fluorogenic probes with tailored properties. On the basis of our findings, we constructed self-assembling rhodamine probes for no-wash live-cell confocal and super-resolution imaging. The designed self-assembling probe specifically labeled its target proteins and displayed high ring-opening ability, fast labeling kinetics (<1 min), and large turn-on fold (>80 folds), which is very difficult to be realized by the existing methods. Using the probe, we achieved high-contrast super-resolution imaging of nuclei and mitochondria with a spatial resolution of up to 42 nm. The probe also showed excellent photostability and proved ideal for real-time and long-term tracking of mitochondrial fission and fusion events with high spatiotemporal resolution. Furthermore, could resolve the ultrastructure of mitochondrial cristae and quantify their morphological changes under drug treatment at nanoscale. Our strategy thus demonstrates its usefulness in designing self-assembling probes for super-resolution imaging.
超分辨率成像提供了一种在纳米尺度分辨率下对动态生物分子事件进行成像的强大方法。一种涉及调节罗丹明分子内环化的巧妙方法为设计用于超分辨率成像的细胞可渗透荧光探针提供了一种有吸引力的策略。然而,精确控制罗丹明环化是一项重大挑战。通过对构效关系的详细研究,我们确定了多个控制罗丹明环化的关键因素。这些发现为创建具有定制特性的荧光探针提供了机会。基于我们的发现,我们构建了用于免洗活细胞共聚焦和超分辨率成像的自组装罗丹明探针。所设计的自组装探针特异性标记其靶蛋白,并表现出高的开环能力、快速的标记动力学(<1分钟)和大的开启倍数(>80倍),这是现有方法很难实现的。使用该探针,我们实现了细胞核和线粒体的高对比度超分辨率成像,空间分辨率高达42纳米。该探针还表现出优异的光稳定性,并被证明非常适合以高时空分辨率实时和长期跟踪线粒体的分裂和融合事件。此外,该探针可以解析线粒体嵴的超微结构,并在纳米尺度上量化药物处理下它们的形态变化。因此,我们的策略在设计用于超分辨率成像的自组装探针方面证明了其有用性。