Lunz Davin, Bonnans J Frédéric, Ruess Jakob
Inria Paris, 2 Rue Simone Iff, 75012, Paris, France.
Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France.
J Math Biol. 2023 Feb 6;86(3):43. doi: 10.1007/s00285-023-01876-x.
Cell-to-cell variability, born of stochastic chemical kinetics, persists even in large isogenic populations. In the study of single-cell dynamics this is typically accounted for. However, on the population level this source of heterogeneity is often sidelined to avoid the inevitable complexity it introduces. The homogeneous models used instead are more tractable but risk disagreeing with their heterogeneous counterparts and may thus lead to severely suboptimal control of bioproduction. In this work, we introduce a comprehensive mathematical framework for solving bioproduction optimal control problems in the presence of heterogeneity. We study population-level models in which such heterogeneity is retained, and propose order-reduction approximation techniques. The reduced-order models take forms typical of homogeneous bioproduction models, making them a useful benchmark by which to study the importance of heterogeneity. Moreover, the derivation from the heterogeneous setting sheds light on parameter selection in ways a direct homogeneous outlook cannot, and reveals the source of approximation error. With view to optimally controlling bioproduction in microbial communities, we ask the question: when does optimising the reduced-order models produce strategies that work well in the presence of population heterogeneity? We show that, in some cases, homogeneous approximations provide remarkably accurate surrogate models. Nevertheless, we also demonstrate that this is not uniformly true: overlooking the heterogeneity can lead to significantly suboptimal control strategies. In these cases, the heterogeneous tools and perspective are crucial to optimise bioproduction.
源于随机化学动力学的细胞间变异性,即使在大型同基因群体中也依然存在。在单细胞动力学研究中,这种变异性通常会得到考虑。然而,在群体层面,这种异质性来源常常被边缘化,以避免它所带来的不可避免的复杂性。取而代之使用的均匀模型更易于处理,但有可能与它们的异质性对应模型不一致,从而可能导致生物生产的控制严重次优。在这项工作中,我们引入了一个全面的数学框架,用于解决存在异质性情况下的生物生产最优控制问题。我们研究保留了这种异质性的群体层面模型,并提出降阶近似技术。降阶模型具有均匀生物生产模型的典型形式,使其成为研究异质性重要性的有用基准。此外,从异质性背景推导而来,以直接的均匀视角无法做到的方式阐明了参数选择,并揭示了近似误差的来源。为了最优地控制微生物群落中的生物生产,我们提出一个问题:何时优化降阶模型能产生在存在群体异质性情况下效果良好的策略?我们表明,在某些情况下,均匀近似提供了非常准确的替代模型。然而,我们也证明情况并非总是如此:忽略异质性可能导致显著次优的控制策略。在这些情况下,异质性工具和视角对于优化生物生产至关重要。