Bokes Pavol, Singh Abhyudai
Department of Applied Mathematics and Statistics, Comenius University, Bratislava 84248, Slovakia.
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.
J Theor Biol. 2025 Feb 7;598:111996. doi: 10.1016/j.jtbi.2024.111996. Epub 2024 Nov 25.
Bacterial cell persistence, crucial for survival under adverse conditions like antibiotic exposure, is intrinsically linked to stochastic fluctuations in gene expression. Certain genes, while inhibiting growth under normal circumstances, confer tolerance to antibiotics at elevated expression levels. The occurrence of antibiotic events lead to instantaneous cellular responses with varied survival probabilities correlated with gene expression levels. Notably, cells with lower protein concentrations face higher mortality rates. This study aims to elucidate an optimal strategy for protein expression conducive to cellular survival. Through comprehensive mathematical analysis, we determine the optimal burst size and frequency that maximise cell proliferation. Furthermore, we explore how the optimal expression distribution changes as the cost of protein expression to growth escalates. Our model reveals a hysteresis phenomenon, characterised by discontinuous transitions between deterministic and stochastic optima. Intriguingly, stochastic optima possess a noise floor, representing the minimal level of fluctuations essential for optimal cellular resilience.
细菌细胞的持留性对于在抗生素暴露等不利条件下的生存至关重要,它与基因表达中的随机波动有着内在联系。某些基因虽然在正常情况下会抑制生长,但在高表达水平时会赋予对抗生素的耐受性。抗生素事件的发生会导致细胞产生瞬时反应,其生存概率各不相同,且与基因表达水平相关。值得注意的是,蛋白质浓度较低的细胞死亡率较高。本研究旨在阐明有利于细胞生存的蛋白质表达最佳策略。通过全面的数学分析,我们确定了使细胞增殖最大化的最佳爆发大小和频率。此外,我们还探讨了随着蛋白质表达对生长的成本增加,最佳表达分布是如何变化的。我们的模型揭示了一种滞后现象,其特征是确定性最优和随机最优之间的不连续转变。有趣的是,随机最优存在一个噪声底限,代表了实现最佳细胞恢复力所必需的最小波动水平。