Suppr超能文献

对自然纹理的敏感性主要依赖于高空间频率。

Sensitivity to naturalistic texture relies primarily on high spatial frequencies.

机构信息

Center for Neural Science, New York University, New York, NY, USA.

出版信息

J Vis. 2023 Feb 1;23(2):4. doi: 10.1167/jov.23.2.4.

Abstract

Natural images contain information at multiple spatial scales. Though we understand how early visual mechanisms split multiscale images into distinct spatial frequency channels, we do not know how the outputs of these channels are processed further by mid-level visual mechanisms. We have recently developed a texture discrimination task that uses synthetic, multi-scale, "naturalistic" textures to isolate these mid-level mechanisms. Here, we use three experimental manipulations (image blur, image rescaling, and eccentric viewing) to show that perceptual sensitivity to naturalistic structure is strongly dependent on features at high object spatial frequencies (measured in cycles/image). As a result, sensitivity depends on a texture acuity limit, a property of the visual system that sets the highest retinal spatial frequency (measured in cycles/degree) at which observers can detect naturalistic features. Analysis of the texture images using a model observer analysis shows that naturalistic image features at high object spatial frequencies carry more task-relevant information than those at low object spatial frequencies. That is, the dependence of sensitivity on high object spatial frequencies is a property of the texture images, rather than a property of the visual system. Accordingly, we find human observers' ability to extract naturalistic information (their efficiency) is similar for all object spatial frequencies. We conclude that the mid-level mechanisms that underlie perceptual sensitivity effectively extract information from all image features below the texture acuity limit, regardless of their retinal and object spatial frequency.

摘要

自然图像包含多空间尺度的信息。虽然我们知道早期视觉机制如何将多尺度图像分割成不同的空间频率通道,但我们不知道这些通道的输出如何被中级视觉机制进一步处理。我们最近开发了一种纹理辨别任务,该任务使用合成的多尺度“自然”纹理来分离这些中级机制。在这里,我们使用三种实验操作(图像模糊、图像缩放和偏心观看)来表明,对自然结构的感知敏感性强烈依赖于高目标空间频率(以每图像周期测量)的特征。因此,敏感性取决于纹理锐度限制,这是视觉系统的一个属性,它设定了观察者可以检测自然特征的最高视网膜空间频率(以每度周期测量)。使用模型观察者分析对纹理图像进行的分析表明,高目标空间频率的自然图像特征比低目标空间频率的特征携带更多与任务相关的信息。也就是说,敏感性对高目标空间频率的依赖是纹理图像的特性,而不是视觉系统的特性。因此,我们发现人类观察者提取自然信息(其效率)的能力对于所有目标空间频率都是相似的。我们得出结论,中级机制有效地从纹理锐度限制以下的所有图像特征中提取信息,而不管它们的视网膜和目标空间频率如何。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ee/9910384/277a2f614241/jovi-23-2-4-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验