Suppr超能文献

用于鉴别乳腺良恶性病变的像素动态对比增强磁共振成像药代动力学参数的分形维分析

Fractal Dimension Analysis of Pixel Dynamic Contrast Enhanced-Magnetic Resonance Imaging Pharmacokinetic Parameters for Discrimination of Benign and Malignant Breast Lesions.

作者信息

Sherminie Lahanda Purage G, Jayatilake Mohan L

机构信息

Department of Nuclear Science, Faculty of Science, University of Colombo, Colombo, Sri Lanka.

Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka.

出版信息

JCO Clin Cancer Inform. 2023 Jan;7:e2200101. doi: 10.1200/CCI.22.00101.

Abstract

PURPOSE

Breast cancer is the most frequent cancer in women worldwide. However, its diagnosis mostly depends on visual examination of radiologic images, leading to an overdiagnosis with substantial costs. Therefore, a quantitative approach such as dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) through pharmacokinetic (PK) modeling is required for reliable analysis. As PK parameters lack information on parameter heterogeneity, texture-based analysis is required to quantify PK parameter heterogeneity. Therefore, this study focused on determining the usefulness of fractal dimension (FD) as a potential imaging biomarker of tumor heterogeneity for discriminating benign and malignant breast lesions.

METHODS

Parametric maps for PK parameters, extravasation rate of contrast agent from blood plasma to extravascular extracellular space (K) and volume fraction of extravascular extracellular space (v), were generated for the regions of interest (ROIs) under the standard model using 18 lesions. Then, tumor ROI and pixel DCE-MRI time-course data were analyzed to extract pixel values of K and v. For each ROI, FD values of K and v were computed using the blanket method.

RESULTS

The FD values of K for benign and malignant lesions varied from 2.96 to 3.49 and from 2.37 to 3.16, respectively, whereas FD values of v for benign and malignant lesions varied from 3.01 to 5.15 and 2.42 to 3.44, respectively. There were significant differences in FD values derived from K parametric maps ( = .0053) and v parametric maps ( = .0271) between benign and malignant lesions according to the statistical analysis.

CONCLUSION

Incorporating texture heterogeneity changes in breast lesions captured by FD with quantitative DCE-MRI parameters generated under the standard model is a potential marker for prediction of malignant lesions.

摘要

目的

乳腺癌是全球女性中最常见的癌症。然而,其诊断大多依赖于对放射影像的视觉检查,这导致了过度诊断且成本高昂。因此,需要一种通过药代动力学(PK)建模的动态对比增强(DCE)磁共振成像(MRI)等定量方法来进行可靠分析。由于PK参数缺乏关于参数异质性的信息,因此需要基于纹理的分析来量化PK参数异质性。因此,本研究聚焦于确定分形维数(FD)作为区分乳腺良恶性病变的肿瘤异质性潜在影像生物标志物的有用性。

方法

使用18个病变,在标准模型下为感兴趣区域(ROI)生成PK参数的参数图,即造影剂从血浆到血管外细胞外间隙的外渗率(K)和血管外细胞外间隙的体积分数(v)。然后,分析肿瘤ROI和像素DCE-MRI时间进程数据以提取K和v的像素值。对于每个ROI,使用覆盖法计算K和v的FD值。

结果

良性和恶性病变的K的FD值分别在2.96至3.49和2.37至3.16之间变化,而良性和恶性病变的v的FD值分别在3.01至5.15和2.42至3.44之间变化。根据统计分析,良性和恶性病变之间从K参数图( = 0.0053)和v参数图( = 0.0271)得出的FD值存在显著差异。

结论

将FD捕获的乳腺病变纹理异质性变化与标准模型下生成的定量DCE-MRI参数相结合,是预测恶性病变的潜在标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验