Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada.
New Phytol. 2023 Apr;238(2):549-566. doi: 10.1111/nph.18713. Epub 2023 Feb 6.
Plant ecologists use functional traits to describe how plants respond to and influence their environment. Reflectance spectroscopy can provide rapid, non-destructive estimates of leaf traits, but it remains unclear whether general trait-spectra models can yield accurate estimates across functional groups and ecosystems. We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples from 103 species. These samples span a large share of known trait variation and represent several functional groups and ecosystems, mainly in eastern Canada. We used partial least-squares regression (PLSR) to build empirical models for estimating traits from spectra. Within the dataset, our PLSR models predicted traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) with high accuracy (R > 0.85; %RMSE < 10). Models for most chemical traits, including pigments, carbon fractions, and major nutrients, showed intermediate accuracy (R = 0.55-0.85; %RMSE = 12.7-19.1). Micronutrients such as Cu and Fe showed the poorest accuracy. In validation on external datasets, models for traits such as LMA and LDMC performed relatively well, while carbon fractions showed steep declines in accuracy. We provide models that produce fast, reliable estimates of several functional traits from leaf spectra. Our results reinforce the potential uses of spectroscopy in monitoring plant function around the world.
植物生态学家使用功能特征来描述植物如何对环境做出反应和影响环境。反射光谱学可以快速、无损地估计叶片特征,但仍不清楚通用特征-光谱模型是否可以在功能组和生态系统中产生准确的估计。我们测量了近 2000 个样本的叶片光谱和 22 个结构和化学特征,这些样本来自 103 个物种,代表了几个功能组和生态系统,主要来自加拿大东部。我们使用偏最小二乘回归(PLSR)从光谱中建立估计特征的经验模型。在数据集内,我们的 PLSR 模型对叶片质量比(LMA)和叶干物质含量(LDMC)等特征的预测具有很高的准确性(R>0.85;%RMSE<10)。对大多数化学特征(包括色素、碳分数和主要养分)的模型显示出中等准确性(R=0.55-0.85;%RMSE=12.7-19.1)。像 Cu 和 Fe 这样的微量元素显示出最差的准确性。在外部数据集上的验证中,LMA 和 LDMC 等特征的模型表现相对较好,而碳分数的准确性则急剧下降。我们提供了从叶片光谱快速可靠地估计几个功能特征的模型。我们的结果加强了光谱学在监测全球植物功能方面的潜在用途。