Wang Jiao, Campos Adrian I, García-Marín Luis M, Rentería Miguel E, Xu Lin
School of Public Health, Sun Yat-Sen University, Guangzhou, China.
Department of Genetics & Computational Biology, Queensland Institute of Medical Research Berghofer Medical Research Institute, Herston, Queensland, Australia.
Obesity (Silver Spring). 2023 Mar;31(3):652-664. doi: 10.1002/oby.23669. Epub 2023 Feb 6.
Sleep apnea and snoring have been associated with type 2 diabetes, with BMI playing a role in the pathway, but the directions of causality are unclear. This study examined the causal associations of sleep apnea and snoring with type 2 diabetes while assessing the role of BMI using multiple genetic methods.
Five genetic methods were used: two-sample; bidirectional univariable Mendelian randomization (MR) inverse variance-weighted (MR-IVW); multivariable MR-IVW; network MR; and latent causal variable method.
Compared with univariable MR-IVW, the odds ratio (95% CI) of type 2 diabetes for genetically predicted sleep apnea and snoring using the largest genome-wide association study decreased dramatically, from 1.61 (95% CI: 1.16-2.23) to 1.08 (95% CI: 0.59-1.97) and from 1.98 (95% CI: 1.25-3.13) to 1.09 (95% CI: 0.64-1.86) after adjustment for BMI. Network MR showed that BMI accounts for 67% and 62% of the total effect of sleep apnea and snoring on type 2 diabetes, respectively. The latent causal variable suggested that sleep apnea and snoring have no direct causal effect on type 2 diabetes.
These results first suggest that the associations of sleep apnea and snoring with type 2 diabetes were mainly driven by BMI. The possible indirect effects of sleep apnea and snoring on type 2 diabetes through BMI cannot be ruled out.
睡眠呼吸暂停和打鼾与2型糖尿病有关,体重指数(BMI)在这一关联途径中起作用,但因果关系方向尚不清楚。本研究使用多种基因方法评估BMI的作用,同时研究睡眠呼吸暂停和打鼾与2型糖尿病之间的因果关联。
采用了五种基因方法:两样本法;双向单变量孟德尔随机化(MR)逆方差加权法(MR-IVW);多变量MR-IVW;网络MR;以及潜在因果变量法。
与单变量MR-IVW相比,使用最大规模全基因组关联研究对基因预测的睡眠呼吸暂停和打鼾而言,2型糖尿病的比值比(95%置信区间)在调整BMI后显著下降,从1.61(95%置信区间:1.16-2.23)降至1.08(95%置信区间:0.59-1.97),以及从1.98(95%置信区间:1.25-3.13)降至1.09(95%置信区间:0.64-1.86)。网络MR显示,BMI分别占睡眠呼吸暂停和打鼾对2型糖尿病总效应的67%和62%。潜在因果变量表明,睡眠呼吸暂停和打鼾对2型糖尿病没有直接因果效应。
这些结果首次表明,睡眠呼吸暂停和打鼾与2型糖尿病之间的关联主要由BMI驱动。不能排除睡眠呼吸暂停和打鼾通过BMI对2型糖尿病产生的可能间接影响。