Suppr超能文献

利用机器学习和脂质组学区分原发性侧索硬化症与肌萎缩性侧索硬化症。

Utilizing machine learning and lipidomics to distinguish primary lateral sclerosis from amyotrophic lateral sclerosis.

作者信息

Lee Ikjae, Stingone Jeanette A, Chan Robin Barry, Mitsumoto Hiroshi

机构信息

Department of Neurology, Columbia University, New York, New York, USA.

Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA.

出版信息

Muscle Nerve. 2023 Apr;67(4):306-310. doi: 10.1002/mus.27797. Epub 2023 Feb 20.

Abstract

INTRODUCTION/AIMS: There are currently no imaging or blood diagnostic biomarkers that can differentiate amyotrophic lateral sclerosis (ALS) from primary lateral sclerosis (PLS) patients early in their disease courses. Our objective is to examine whether patients with PLS can be differentiated from ALS reliably by using plasma lipidome profile and supervised machine learning.

METHODS

40 ALS and 28 PLS patients derived from the Multicenter Cohort study of Oxidative Stress (COSMOS) and 28 healthy control volunteers (CTR) were included. ALS, PLS, and CTR were matched by age and sex. Plasma samples were obtained after overnight fasting. Lipids were extracted from the plasma samples and analyzed using liquid chromatography/mass spectrometry to obtain relative concentrations of 392 lipid species. The lipid data were partitioned into training and testing datasets randomly. An elastic net algorithm was trained using cross-validation to classify PLS vs ALS and PLS vs CTR. Final accuracy was evaluated in the testing dataset.

RESULTS

The elastic net model trained with labeled PLS and ALS training lipid dataset demonstrated accuracy (number classified correctly/total number), sensitivity, and specificity of 100% in classifying PLS vs ALS in the unlabeled testing lipid dataset. Similarly, the elastic net model trained with labeled PLS and CTR training lipid datasets demonstrated accuracy, sensitivity, and specificity of 88% in classifying PLS vs CTR in the unlabeled testing lipid dataset.

DISCUSSION

Our study suggests PLS patients can be accurately distinguished from ALS and CTR by combining lipidome profile and supervised machine learning without clinical information.

摘要

引言/目的:目前尚无影像学或血液诊断生物标志物能够在肌萎缩侧索硬化症(ALS)和原发性侧索硬化症(PLS)患者病程早期将二者区分开来。我们的目标是研究能否通过血浆脂质组图谱和监督式机器学习可靠地区分PLS患者与ALS患者。

方法

纳入了来自氧化应激多中心队列研究(COSMOS)的40例ALS患者、28例PLS患者以及28名健康对照志愿者(CTR)。ALS、PLS和CTR在年龄和性别上进行了匹配。过夜禁食后采集血浆样本。从血浆样本中提取脂质,并使用液相色谱/质谱法进行分析,以获得392种脂质的相对浓度。脂质数据被随机划分为训练数据集和测试数据集。使用交叉验证训练弹性网络算法,以区分PLS与ALS以及PLS与CTR。在测试数据集中评估最终准确性。

结果

使用标记的PLS和ALS训练脂质数据集训练的弹性网络模型在未标记的测试脂质数据集中对PLS与ALS进行分类时,准确率(正确分类数/总数)、敏感性和特异性均为100%。同样,使用标记的PLS和CTR训练脂质数据集训练的弹性网络模型在未标记的测试脂质数据集中对PLS与CTR进行分类时,准确率、敏感性和特异性为88%。

讨论

我们的研究表明,无需临床信息,通过结合脂质组图谱和监督式机器学习,可准确区分PLS患者与ALS患者及CTR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验