Hansen Morten S, Søe Kent, Christensen Line L, Fernandez-Guerra Paula, Hansen Nina W, Wyatt Rachael A, Martin Claire, Hardy Rowan S, Andersen Thomas L, Olesen Jacob B, Hartmann Bolette, Rosenkilde Mette M, Kassem Moustapha, Rauch Alexander, Gorvin Caroline M, Frost Morten
Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark.
Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark.
Eur J Endocrinol. 2023 Jan 10;188(1). doi: 10.1093/ejendo/lvac004.
Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects. Using a GIPR-specific antagonist, we aimed to assess whether GIP acts directly on primary human osteoclasts and osteoblasts.
Osteoclasts were differentiated from human CD14+ monocytes and osteoblasts from human bone. GIPR expression was determined using RNA-seq in primary human osteoclasts and in situ hybridization in human femoral bone. Osteoclastic resorptive activity was assessed using microscopy. GIPR signaling pathways in osteoclasts and osteoblasts were assessed using LANCE cAMP and AlphaLISA phosphorylation assays, intracellular calcium imaging and confocal microscopy. The bioenergetic profile of osteoclasts was evaluated using Seahorse XF-96.
GIPR is robustly expressed in mature human osteoclasts. GIP inhibits osteoclastogenesis, delays bone resorption, and increases osteoclast apoptosis by acting upon multiple signaling pathways (Src, cAMP, Akt, p38, Akt, NFκB) to impair nuclear translocation of nuclear factor of activated T cells-1 (NFATc1) and nuclear factor-κB (NFκB). Osteoblasts also expressed GIPR, and GIP improved osteoblast survival. Decreased bone resorption and improved osteoblast survival were also observed after GIP treatment of osteoclast-osteoblast co-cultures. Antagonizing GIPR with GIP(3-30)NH2 abolished the effects of GIP on osteoclasts and osteoblasts.
GIP inhibits bone resorption and improves survival of human osteoblasts, indicating that drugs targeting GIPR may impair bone resorption, whilst preserving bone formation.
靶向葡萄糖依赖性促胰岛素多肽(GIP)受体(GIPR)的药物正逐渐成为治疗2型糖尿病和肥胖症的方法。在短期临床研究中,GIP可急性降低骨吸收的血清标志物,并短暂增加骨形成标志物。然而,尚不清楚GIP是否直接作用于骨细胞来介导这些效应。我们使用GIPR特异性拮抗剂,旨在评估GIP是否直接作用于原代人破骨细胞和成骨细胞。
破骨细胞从人CD14+单核细胞分化而来,成骨细胞从人骨中分离。使用RNA测序在原代人破骨细胞中测定GIPR表达,并在人股骨中进行原位杂交。使用显微镜评估破骨细胞的吸收活性。使用LANCE cAMP和AlphaLISA磷酸化测定、细胞内钙成像和共聚焦显微镜评估破骨细胞和成骨细胞中的GIPR信号通路。使用Seahorse XF-96评估破骨细胞的生物能量特征。
GIPR在成熟的人破骨细胞中大量表达。GIP通过作用于多种信号通路(Src、cAMP、Akt、p38、Akt、NFκB)抑制破骨细胞生成,延迟骨吸收,并增加破骨细胞凋亡,从而损害活化T细胞核因子-1(NFATc1)和核因子-κB(NFκB)的核转位。成骨细胞也表达GIPR,并且GIP可改善成骨细胞的存活。在对破骨细胞-成骨细胞共培养物进行GIP处理后,也观察到骨吸收减少和成骨细胞存活改善。用GIP(3-30)NH2拮抗GIPR消除了GIP对破骨细胞和成骨细胞的影响。
GIP抑制骨吸收并改善人成骨细胞的存活,表明靶向GIPR的药物可能在保留骨形成的同时损害骨吸收。