Suppr超能文献

HAT:用于高精度短读长和长读长测序数据的变异检测

HAT: variant calling for highly accurate short-read and long-read sequencing data.

作者信息

Ng Jeffrey K, Turner Tychele N

机构信息

Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

bioRxiv. 2023 Jan 28:2023.01.27.525940. doi: 10.1101/2023.01.27.525940.

Abstract

MOTIVATION

variant (DNV) calling is challenging from parent-child sequenced trio data. We developed are nd ortoise (HAT) to work as an automated workflow to detect DNVs in highly accurate short-read and long-read sequencing data. Reliable detection of DNVs is important for human genetics studies (e.g., autism, epilepsy).

RESULTS

HAT is a workflow to detect DNVs from short-read and long read sequencing data. This workflow begins with aligned read data (i.e., CRAM or BAM) from a parent-child sequenced trio and outputs DNVs. HAT detects high-quality DNVs from short-read whole-exome sequencing, short-read whole-genome sequencing, and highly accurate long-read sequencing data.

摘要

动机

从亲子测序三联体数据中进行变异(DNV)检测具有挑战性。我们开发了HAT(高精度乌龟)作为一种自动化工作流程,以在高精度短读长和长读长测序数据中检测DNV。可靠地检测DNV对于人类遗传学研究(例如自闭症、癫痫)很重要。

结果

HAT是一种从短读长和长读长测序数据中检测DNV的工作流程。该工作流程从亲子测序三联体的比对读段数据(即CRAM或BAM)开始,并输出DNV。HAT可从短读长全外显子测序、短读长全基因组测序和高精度长读长测序数据中检测高质量的DNV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59c8/9900919/b2393057c4ed/nihpp-2023.01.27.525940v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验