Ng Jeffrey K, Turner Tychele N
Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
bioRxiv. 2023 Jan 28:2023.01.27.525940. doi: 10.1101/2023.01.27.525940.
variant (DNV) calling is challenging from parent-child sequenced trio data. We developed are nd ortoise (HAT) to work as an automated workflow to detect DNVs in highly accurate short-read and long-read sequencing data. Reliable detection of DNVs is important for human genetics studies (e.g., autism, epilepsy).
HAT is a workflow to detect DNVs from short-read and long read sequencing data. This workflow begins with aligned read data (i.e., CRAM or BAM) from a parent-child sequenced trio and outputs DNVs. HAT detects high-quality DNVs from short-read whole-exome sequencing, short-read whole-genome sequencing, and highly accurate long-read sequencing data.
从亲子测序三联体数据中进行变异(DNV)检测具有挑战性。我们开发了HAT(高精度乌龟)作为一种自动化工作流程,以在高精度短读长和长读长测序数据中检测DNV。可靠地检测DNV对于人类遗传学研究(例如自闭症、癫痫)很重要。
HAT是一种从短读长和长读长测序数据中检测DNV的工作流程。该工作流程从亲子测序三联体的比对读段数据(即CRAM或BAM)开始,并输出DNV。HAT可从短读长全外显子测序、短读长全基因组测序和高精度长读长测序数据中检测高质量的DNV。