Suppr超能文献

平面滑动限制缓冲器和动力学自加速稳定单晶 LiNiCoMnO 正极的构建。

Construction of Planar Gliding Restriction Buffer and Kinetic Self-Accelerator Stabilizing Single-Crystalline LiNiCoMnO Cathode.

机构信息

School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.

Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8555-8566. doi: 10.1021/acsami.2c22815. Epub 2023 Feb 6.

Abstract

The single-crystalline Ni-rich cathode has aroused much attention for extenuating the cycling and safety crises in comparison to the polycrystalline cathode. However, planar gliding and kinetic hindrance hinder its chemo-mechanical properties with cycling, which induce delamination cracking and damage the mechanical integrity in single crystals. Herein, a robust Li(ScTi)(PO) (LSTP) ion/electron conductive network was constructed to decorate single-crystal LiNiCoMnO (SC90) particles. Via physicochemical characterizations and theoretical calculations, this LSTP coating that evenly grows on the SC90 particle with good lattice matching and strong bonding effectively restricts the anisotropic lattice collapse along the c-axis and the cation mixing activity of SC90, thus suppressing planar gliding and delamination cracking during repeated high-voltage lithiation/delithiation processes. Moreover, such a 3D LSTP network can also facilitate the lithium-ion transport and prevent the electrolyte's corrosion, lightening the kinetic hindrance and triggering the surface phase transformation. Combined with the Li metal anode, the LSTP-modified SC90 cell exhibits a desirable capacity retention of 90.5% at 5 C after 300 cycles and stabilizes the operation at 4.3/4.5 V. Our results provide surface modification engineering to mitigate planar gliding and kinetic hindrance of the single-crystalline ultra-high Ni-rich cathode, which inspires peers to design other layered cathode materials.

摘要

与多晶阴极相比,单晶富镍阴极在缓解循环和安全危机方面引起了广泛关注。然而,平面滑动和动力学阻碍阻碍了其在循环过程中的化学机械性能,导致分层开裂并破坏单晶的机械完整性。在此,构建了坚固的 Li(ScTi)(PO)(LSTP)离子/电子导电网络,以修饰单晶 LiNiCoMnO(SC90)颗粒。通过物理化学特性和理论计算,这种均匀生长在 SC90 颗粒上的 LSTP 涂层具有良好的晶格匹配和强键合,有效地限制了沿 c 轴的各向异性晶格塌陷和 SC90 的阳离子混合活性,从而抑制了在反复的高压锂化/脱锂过程中的平面滑动和分层开裂。此外,这种 3D LSTP 网络还可以促进锂离子传输并防止电解质腐蚀,减轻动力学阻碍并触发表面相转变。与锂金属阳极结合,LSTP 修饰的 SC90 电池在 5 C 下经过 300 次循环后具有理想的容量保持率 90.5%,并稳定在 4.3/4.5 V 下运行。我们的结果提供了表面改性工程来减轻单晶超高富镍阴极的平面滑动和动力学阻碍,这激发了同行设计其他层状阴极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验