Suppr超能文献

原子分散的 Fe 和 Co 位点促进的高效羟基自由基生成用于非均相电芬顿氧化。

Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro-Fenton Oxidation.

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China.

College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, China.

出版信息

Environ Sci Technol. 2023 Feb 21;57(7):2907-2917. doi: 10.1021/acs.est.2c06981. Epub 2023 Feb 7.

Abstract

The heterogeneous electro-Fenton (hetero-e-Fenton)-coupled electrocatalytic oxygen reduction reaction (ORR) is regarded as a promising strategy for OH production by simultaneously driving two-electron ORR toward HO and stepped activating the as-generated HO to OH. However, the high-efficiency electrogeneration of OH remains challengeable, as it is difficult to synchronously obtain efficient catalysis of both reaction steps above on one catalytic site. In this work, we propose a dual-atomic-site catalyst (CoFe DAC) to cooperatively catalyze OH electrogeneration, where the atomically dispersed Co sites are assigned to enhance O reduction to HO intermediates and Fe sites are responsible for activation of the as-generated HO to OH. The CoFe DAC delivers a higher OH production rate of 2.4 mmol L min g than the single-site catalyst Co-NC (0.8 mmol L min g) and Fe-NC (1.0 mmol L min g). Significantly, the CoFe DAC hetero-e-Fenton process is demonstrated to be more energy-efficient for actual coking wastewater treatment with an energy consumption of 19.0 kWh kg COD than other electrochemical technologies that reported values of 29.7∼68.0 kW h kg COD. This study shows the attractive advantages of efficiency and sustainability for OH electrogeneration, which should have fresh inspiration for the development of new-generation wastewater treatment technology.

摘要

非均相电芬顿(hetero-e-Fenton)-耦合电催化氧还原反应(ORR)被认为是一种通过同时驱动两电子 ORR 向 HO 并逐步激活生成的 HO 向 OH 来生产 OH 的有前途的策略。然而,高效的 OH 电生成仍然具有挑战性,因为很难在一个催化位点上同时获得上述两个反应步骤的高效催化。在这项工作中,我们提出了一种双原子位点催化剂(CoFe DAC)来协同催化 OH 的电生成,其中原子分散的 Co 位点被赋予增强 O 还原为 HO 中间体的能力,而 Fe 位点负责激活生成的 HO 为 OH。与单原子位点催化剂 Co-NC(0.8 mmol L min g)和 Fe-NC(1.0 mmol L min g)相比,CoFe DAC 提供了更高的 OH 生成速率 2.4 mmol L min g。值得注意的是,与其他电化学技术(报道的值为 29.7∼68.0 kW h kg COD)相比,CoFe DAC 异质 e-Fenton 工艺在实际焦化废水处理中具有更高的能源效率,能耗为 19.0 kWh kg COD。本研究展示了 OH 电生成在效率和可持续性方面的诱人优势,这应该为新一代废水处理技术的发展提供新的灵感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验