Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
Langmuir. 2023 Feb 21;39(7):2771-2778. doi: 10.1021/acs.langmuir.2c03233. Epub 2023 Feb 7.
The development of a dismantlable adhesion technology that allows switching between bonding and debonding states using external stimuli is important for realizing renewable and sustainable material cycles. Controlling the adhesion interface is an effective approach to manipulate the adhesion strength; however, research on dismantlable systems focusing on the interface has not been proceeded. Recently, we demonstrated a novel dismantlable system based on a stimuli-responsive molecular layer comprising cleavable anthracene dimers, which strengthen the initial adhesive force by forming chemical bonds between the substrate and adhesive and can be dismantled when required via stimulation-induced bond breaking. Here, we evaluate the use of the anthracene-based molecular layer with different components for verifying its versatility in the adhesive/dismantling system. The formation of the cleavable molecular layer by the stacking of relevant molecules enabled its usage with two types of adhesives, an epoxy adhesive and a silane-modified polymer adhesive. The initial adhesive strengths were improved in both types of molecular layers by creating chemical bonds at the adhesion interfaces. Light irradiation or heating stimuli for 1 min reduced the peel strength by up to 65%, and dismantling occurred in the cleavable photodimer layer. This study expands the versatile applicability of the molecular layer-based dismantling system.
发展一种可拆解的粘附技术,该技术可以使用外部刺激在键合和去键合状态之间切换,对于实现可再生和可持续的材料循环非常重要。控制粘附界面是一种有效控制粘附强度的方法;然而,针对关注界面的可拆解系统的研究尚未进行。最近,我们展示了一种基于包含可裂解蒽二聚体的刺激响应分子层的新型可拆解系统,该系统通过在基底和粘合剂之间形成化学键来增强初始粘附力,并且可以在需要时通过刺激诱导的键断裂进行拆解。在这里,我们评估了使用具有不同组成的基于蒽的分子层来验证其在粘合/拆解系统中的多功能性。通过相关分子的堆叠形成可裂解的分子层,使其能够与两种类型的粘合剂(环氧树脂粘合剂和硅烷改性聚合物粘合剂)一起使用。在两种分子层中,通过在粘附界面处形成化学键,提高了初始粘附强度。光照射或加热刺激 1 分钟可将剥离强度降低多达 65%,并且可在可裂解的光二聚体层中进行拆解。这项研究扩展了基于分子层的拆解系统的多功能适用性。