Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac 33600, France.
Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac 33600, France.
Anal Chem. 2023 Feb 21;95(7):3596-3605. doi: 10.1021/acs.analchem.2c04185. Epub 2023 Feb 7.
Understanding the membrane dynamics of complex systems is essential to follow their function. As molecules in membranes can be in a rigid or mobile state depending on external (temperature, pressure) or internal (pH, domains, etc.) conditions, we propose an in-depth examination of NMR methods to filter highly mobile molecular parts from others that are in more restricted environments. We have thus developed a quantitative magic-angle spinning (MAS) C NMR approach coupled with cross-polarization (CP) and/or Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) on rigid and fluid unlabeled model membranes. We demonstrate that INEPT can detect only very mobile lipid headgroups in gel (solid-ordered) phases; the remaining rigid parts are only detected with CP. A direct correlation is established between the normalized line intensity as obtained by CP and the C-H (C-D) order parameters measured by wide-line H NMR or extracted from molecular dynamics: / ≈ 5||, indicating that when the order is greater than 0.2-0.3 (maximum value of 0.5 for chain CH), only rigid parts can be filtered and detected using CP techniques. In very fluid (liquid-disordered) membranes, where there are many more active motions, both INEPT and CP detect resonances, with, however, a clear propensity of each technique to detect mobile and restricted molecular parts, respectively. Interestingly, the C NMR chemical shift of lipid hydrocarbon chains can be used to monitor order-disorder phase transitions and calculate the fraction of chain defects (rotamers) and the part of the transition enthalpy due to bond rotations (6-7 kJ·mol for dimyristolphosphatidylcholine, DMPC). Cholesterol-containing membranes (liquid-ordered phases) can be dynamically contrasted as the rigid-body sterol is mainly detected by the CP technique, with a contact time of 1 ms, and the phospholipid by INEPT. Our work opens up a straightforward, robust, and cost-effective route for the determination of membrane dynamics by taking advantage of well-resolved conventional C NMR experiments without the need of isotopic labeling.
理解复杂体系的膜动力学对于研究其功能至关重要。由于膜中的分子可以根据外部(温度、压力)或内部(pH 值、域等)条件处于刚性或移动状态,我们提出了深入研究 NMR 方法的建议,以从其他处于更受限环境的分子中过滤出高度移动的分子部分。因此,我们开发了一种定量的魔角旋转(MAS)C NMR 方法,该方法与刚性和流体未标记模型膜上的交叉极化(CP)和/或极化转移增强的非敏感核(INEPT)相结合。我们证明 INEPT 只能检测到凝胶(固态有序)相中非常移动的脂质头部基团;其余刚性部分仅通过 CP 检测到。通过 CP 获得的归一化线强度与通过宽线 H NMR 测量或从分子动力学中提取的 C-H(C-D)序参数之间建立了直接相关性:/≈5||,表明当序参数大于 0.2-0.3(链 CH 的最大值为 0.5)时,只有使用 CP 技术才能过滤和检测到刚性部分。在非常流体(液态无序)的膜中,存在更多的活跃运动,INEPT 和 CP 都可以检测到共振,但每种技术都有明显的倾向,可以分别检测到移动和受限的分子部分。有趣的是,脂质碳氢链的 C NMR 化学位移可用于监测有序-无序相变,并计算链缺陷(旋转异构体)的分数和由于键旋转引起的相变焓的一部分(对于二肉豆蔻酰磷脂酰胆碱,DMPC 为 6-7 kJ·mol)。含有胆固醇的膜(液态有序相)可以通过动态对比,因为刚性体甾醇主要通过 CP 技术检测,接触时间为 1 ms,而磷脂通过 INEPT 检测。我们的工作利用分辨率良好的常规 C NMR 实验,无需同位素标记,为通过优势确定膜动力学提供了一种简单、稳健且具有成本效益的方法。