Suppr超能文献

基于跨度的单阶段联合实体关系抽取模型。

Span-based single-stage joint entity-relation extraction model.

机构信息

School of Computer Science and Engineering, Changchun University of Technology, Changchun, Jilin, China.

出版信息

PLoS One. 2023 Feb 7;18(2):e0281055. doi: 10.1371/journal.pone.0281055. eCollection 2023.

Abstract

Extracting entities and relations from the unstructured text has attracted increasing attention in recent years. The existing work has achieved considerable results, yet it is difficult to solve entity overlap and exposure bias. To address cascading errors, exposure bias, and entity overlap in existing entity relation extraction approaches, we propose a joint entity relation extraction model (SMHS) based on a span-level multi-head selection mechanism, transforming entity relation extraction into a span-level multi-head selection problem. Our model uses span-tagger and span-embedding to construct span semantic vectors, utilizes LSTM and multi-head self-attention mechanism for span feature extraction, multi-head selection mechanism for span-level relation decoding, and introduces span classification task for multi-task learning to decode out the relation triad in a single-stage. Experiments on the classic English dataset NYT and the publicly available Chinese relationship extraction dataset DuIE 2.0 show that this method achieves better results than the baseline method, which verifies the effectiveness of this method. Source code and data are published here(https://github.com/Beno-waxgourd/NLP.git).

摘要

近年来,从非结构化文本中提取实体和关系引起了越来越多的关注。现有工作已经取得了相当大的成果,但很难解决实体重叠和暴露偏差问题。针对现有实体关系抽取方法中的级联错误、暴露偏差和实体重叠问题,我们提出了一种基于跨度级多头选择机制的联合实体关系抽取模型(SMHS),将实体关系抽取转化为跨度级多头选择问题。我们的模型使用跨度标记器和跨度嵌入来构建跨度语义向量,利用 LSTM 和多头自注意力机制进行跨度特征提取,多头选择机制进行跨度级关系解码,并引入跨度分类任务进行多任务学习,以在单个阶段解码出关系三元组。在经典的英语数据集 NYT 和公开的中文关系抽取数据集 DuIE 2.0 上的实验表明,该方法优于基线方法,验证了该方法的有效性。源代码和数据发布在这个链接(https://github.com/Beno-waxgourd/NLP.git)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da1/9904475/90a70939d07c/pone.0281055.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验