Suppr超能文献

利用日本理赔数据估算癌症发病率的新算法:一项可行性研究。

Novel Algorithm for the Estimation of Cancer Incidence Using Claims Data in Japan: A Feasibility Study.

机构信息

Division of Public Health, Faculty of Agriculture, Setsunan University, Osaka, Japan.

National Cancer Center Institute for Cancer Control, Tokyo, Japan.

出版信息

JCO Glob Oncol. 2023 Jan;9:e2200222. doi: 10.1200/GO.22.00222.

Abstract

PURPOSE

We developed algorithms to identify patients with newly diagnosed cancer from a Japanese claims database to identify the patients with newly diagnosed cancer of the sample population, which were compared with the nationwide cancer incidence in Japan to assess the validity of the novel algorithms.

METHODS

We developed two algorithms to identify patients with stomach, lung, colorectal, breast, and cervical cancers: diagnosis only (algorithm 1), and combining diagnosis, treatments, and medicines (algorithm 2). Patients with newly diagnosed cancer were identified from an anonymized commercial claims database (JMDC Claims Database) in 2017 with two inclusions/exclusion criteria: selecting all patients with cancer (extract 1) and excluding patients who had received cancer treatments in 2015 or 2016 (extract 2). We estimated the cancer incidence of the five cancer sites and compared it with the Japan National Cancer Registry incidence (calculated standardized incidence ratio with 95% CIs).

RESULTS

The number of patients with newly diagnosed cancer ranged from 219 to 17,840 by the sites, algorithms, and exclusion criteria. Standardized incidence ratios were significantly higher in the JMDC Claims Database than in the national registry data for extract 1 and algorithm 1, extract 1 and algorithm 2, and extract 2 and algorithm 1. In extract 2 and algorithm 2, colorectal cancer in male and stomach, lung, and cervical cancers in females showed similar cancer incidence in the JMDC and national registry data.

CONCLUSION

The novel algorithms are effective for extracting information about patients with cancer from claims data by using the combined information on diagnosis, procedures, and medicines (algorithm 2), with 2-year cancer-treatment history as an exclusion criterion (extract 2).

摘要

目的

我们开发了算法,以从日本理赔数据库中识别新诊断癌症患者,从而识别样本人群中患有新诊断癌症的患者,并与日本全国癌症发病率进行比较,以评估新算法的有效性。

方法

我们开发了两种算法来识别患有胃癌、肺癌、结直肠癌、乳腺癌和宫颈癌的患者:仅诊断(算法 1),以及结合诊断、治疗和药物(算法 2)。通过两项纳入/排除标准,从匿名商业理赔数据库(JMDC 理赔数据库)中识别出 2017 年新诊断癌症患者:选择所有癌症患者(提取 1)和排除 2015 年或 2016 年接受过癌症治疗的患者(提取 2)。我们估计了五个癌症部位的癌症发病率,并将其与日本国家癌症登记发病率(计算了 95%CI 的标准化发病率比)进行了比较。

结果

按部位、算法和排除标准,新诊断癌症患者的数量从 219 人到 17840 人不等。对于提取 1 和算法 1、提取 1 和算法 2 以及提取 2 和算法 1,JMDC 理赔数据库的标准化发病率比明显高于国家登记数据。在提取 2 和算法 2 中,男性的结直肠癌以及女性的胃癌、肺癌和宫颈癌的癌症发病率在 JMDC 和国家登记数据中相似。

结论

新算法通过使用诊断、程序和药物的综合信息(算法 2),并将 2 年的癌症治疗史作为排除标准(提取 2),从理赔数据中提取癌症患者信息是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1674/10166397/945d14a70c00/go-9-e2200222-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验