Suppr超能文献

隐私、偏见与面部识别技术的临床应用:遗传学专业人员的调查。

Privacy, bias and the clinical use of facial recognition technology: A survey of genetics professionals.

机构信息

Department of Psychiatry, Stanford University, Stanford, California, USA.

Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, USA.

出版信息

Am J Med Genet C Semin Med Genet. 2023 Sep;193(3):e32035. doi: 10.1002/ajmg.c.32035. Epub 2023 Feb 7.

Abstract

Facial recognition technology (FRT) has been adopted as a precision medicine tool. The medical genetics field highlights both the clinical potential and privacy risks of this technology, putting the discipline at the forefront of a new digital privacy debate. Investigating how geneticists perceive the privacy concerns surrounding FRT can help shape the evolution and regulation of the field, and provide lessons for medicine and research more broadly. Five hundred and sixty-two genetics clinicians and researchers were approached to fill out a survey, 105 responded, and 80% of these completed. The survey consisted of 48 questions covering demographics, relationship to new technologies, views on privacy, views on FRT, and views on regulation. Genetics professionals generally placed a high value on privacy, although specific views differed, were context-specific, and covaried with demographic factors. Most respondents (88%) agreed that privacy is a basic human right, but only 37% placed greater weight on it than other values such as freedom of speech. Most respondents (80%) supported FRT use in genetics, but not necessarily for broader clinical use. A sizeable percentage (39%) were unaware of FRT's lower accuracy rates in marginalized communities and of the mental health effects of privacy violations (62%), but most (76% and 75%, respectively) expressed concern when informed. Overall, women and those who self-identified as politically progressive were more concerned about the lower accuracy rates in marginalized groups (88% vs. 64% and 83% vs. 63%, respectively). Younger geneticists were more wary than older geneticists about using FRT in genetics (28% compared to 56% "strongly" supported such use). There was an overall preference for more regulation, but respondents had low confidence in governments' or technology companies' ability to accomplish this. Privacy views are nuanced and context-dependent. Support for privacy was high but not absolute, and clear deficits existed in awareness of crucial FRT-related discrimination potential and mental health impacts. Education and professional guidelines may help to evolve views and practices within the field.

摘要

人脸识别技术(FRT)已被用作精准医学工具。医学遗传学领域突显了这项技术的临床潜力和隐私风险,使该学科处于新的数字隐私辩论的前沿。调查遗传学家如何看待围绕 FRT 的隐私问题,可以帮助塑造该领域的发展和监管,并为更广泛的医学和研究提供经验教训。向 562 名遗传学家临床医生和研究人员提出填写调查的请求,有 105 人做出回应,其中 80%完成了调查。调查包括 48 个问题,涵盖人口统计学、与新技术的关系、对隐私的看法、对 FRT 的看法以及对监管的看法。遗传学家专业人员普遍非常重视隐私,但具体看法存在差异、因具体情况而异,并且与人口统计学因素相关。大多数受访者(88%)同意隐私是一项基本人权,但只有 37%的人比言论自由等其他价值观更重视隐私。大多数受访者(80%)支持 FRT 在遗传学中的应用,但不一定支持更广泛的临床应用。相当一部分人(39%)不知道 FRT 在边缘化社区的准确率较低,也不知道侵犯隐私的心理健康影响(62%),但大多数人(分别为 76%和 75%)在获悉后表示担忧。总体而言,女性和自认为政治进步的人对边缘化群体中较低的准确率更为担忧(分别为 88%对 64%和 83%对 63%)。年轻的遗传学家比年长的遗传学家对在遗传学中使用 FRT 更加警惕(28%对比 56%“强烈”支持这种使用)。总体而言,人们更倾向于更多的监管,但受访者对政府或科技公司实现这一目标的能力缺乏信心。对隐私的看法是复杂和依赖背景的。对隐私的支持很高,但并非绝对,并且在意识到 FRT 相关歧视潜力和心理健康影响方面存在明显的缺陷。教育和专业准则可能有助于在该领域内发展观点和实践。

相似文献

1
Privacy, bias and the clinical use of facial recognition technology: A survey of genetics professionals.
Am J Med Genet C Semin Med Genet. 2023 Sep;193(3):e32035. doi: 10.1002/ajmg.c.32035. Epub 2023 Feb 7.
2
A survey of U.S. public perspectives on facial recognition technology and facial imaging data practices in health and research contexts.
PLoS One. 2021 Oct 14;16(10):e0257923. doi: 10.1371/journal.pone.0257923. eCollection 2021.
3
What Are Important Ethical Implications of Using Facial Recognition Technology in Health Care?
AMA J Ethics. 2019 Feb 1;21(2):E180-187. doi: 10.1001/amajethics.2019.180.
5
Protection of the rights of the individual when using facial recognition technology.
Heliyon. 2022 Mar 11;8(3):e09086. doi: 10.1016/j.heliyon.2022.e09086. eCollection 2022 Mar.
7
Risks to Privacy With Use of Social Media: Understanding the Views of Social Media Users With Serious Mental Illness.
Psychiatr Serv. 2019 Jul 1;70(7):561-568. doi: 10.1176/appi.ps.201800520. Epub 2019 Apr 5.
8
Attitudes regarding privacy of genomic information in personalized cancer therapy.
J Am Med Inform Assoc. 2014 Oct;21(e2):e320-5. doi: 10.1136/amiajnl-2013-002579. Epub 2014 Apr 15.
10
Consumer Views on Using Digital Data for COVID-19 Control in the United States.
JAMA Netw Open. 2021 May 3;4(5):e2110918. doi: 10.1001/jamanetworkopen.2021.10918.

本文引用的文献

1
Precise modulation of transcription factor levels identifies features underlying dosage sensitivity.
Nat Genet. 2023 May;55(5):841-851. doi: 10.1038/s41588-023-01366-2. Epub 2023 Apr 6.
2
Detecting 3D syndromic faces as outliers using unsupervised normalizing flow models.
Artif Intell Med. 2022 Dec;134:102425. doi: 10.1016/j.artmed.2022.102425. Epub 2022 Oct 20.
3
Refining nosology by modelling variation among facial phenotypes: the RASopathies.
J Med Genet. 2022 Jul 20. doi: 10.1136/jmedgenet-2021-108366.
5
Neural Networks for Classification and Image Generation of Aging in Genetic Syndromes.
Front Genet. 2022 Apr 11;13:864092. doi: 10.3389/fgene.2022.864092. eCollection 2022.
6
A Deep Invertible 3-D Facial Shape Model for Interpretable Genetic Syndrome Diagnosis.
IEEE J Biomed Health Inform. 2022 Jul;26(7):3229-3239. doi: 10.1109/JBHI.2022.3164848. Epub 2022 Jul 1.
7
GestaltMatcher facilitates rare disease matching using facial phenotype descriptors.
Nat Genet. 2022 Mar;54(3):349-357. doi: 10.1038/s41588-021-01010-x. Epub 2022 Feb 10.
8
Conservatism predicts aversion to consequential Artificial Intelligence.
PLoS One. 2021 Dec 20;16(12):e0261467. doi: 10.1371/journal.pone.0261467. eCollection 2021.
10
Commercial DNA tests and police investigations: a broad bioethical perspective.
J Med Ethics. 2021 Sep 11;47(12):788-95. doi: 10.1136/medethics-2021-107568.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验