Suppr超能文献

药物相互作用的机制静态模型能否为研究豁免和标签建议的监管申报提供支持?

Can Mechanistic Static Models for Drug-Drug Interactions Support Regulatory Filing for Study Waivers and Label Recommendations?

机构信息

Boehringer Ingelheim Pharma GmbH & Co. KG, TMCP Therapeutic Areas, Binger Str. 173, 55218, Ingelheim am Rhein, Germany.

TMCP, Boehringer Ingelheim, Ridgefield, USA.

出版信息

Clin Pharmacokinet. 2023 Mar;62(3):457-480. doi: 10.1007/s40262-022-01204-4. Epub 2023 Feb 8.

Abstract

BACKGROUND AND OBJECTIVE

Mechanistic static and dynamic physiologically based pharmacokinetic models are used in clinical drug development to assess the risk of drug-drug interactions (DDIs). Currently, the use of mechanistic static models is restricted to screening DDI risk for an investigational drug, while dynamic physiologically based pharmacokinetic models are used for quantitative predictions of DDIs to support regulatory filing. As physiologically based pharmacokinetic model development by sponsors as well as a review of models by regulators require considerable resources, we explored the possibility of using mechanistic static models to support regulatory filing, using representative cases of successful physiologically based pharmacokinetic submissions to the US Food and Drug Administration under different classes of applications.

METHODS

Drug-drug interaction predictions with mechanistic static models were done for representative cases in the different classes of applications using the same data and modelling workflow as described in the Food and Drug Administration clinical pharmacology reviews. We investigated the hypothesis that the use of unbound average steady-state concentrations of modulators as driver concentrations in the mechanistic static models should lead to the same conclusions as those from physiologically based pharmacokinetic modelling for non-dynamic measures of DDI risk assessment such as the area under the plasma concentration-time curve ratio, provided the same input data are employed for the interacting drugs.

RESULTS

Drug-drug interaction predictions of area under the plasma concentration-time curve ratios using mechanistic static models were mostly comparable to those reported in the Food and Drug Administration reviews using physiologically based pharmacokinetic models for all representative cases in the different classes of applications.

CONCLUSIONS

The results reported in this study should encourage the use of models that best fit an intended purpose, limiting the use of physiologically based pharmacokinetic models to those applications that leverage its unique strengths, such as what-if scenario testing to understand the effect of dose staggering, evaluating the role of uptake and efflux transporters, extrapolating DDI effects from studied to unstudied populations, or assessing the impact of DDIs on the exposure of a victim drug with concurrent mechanisms. With this first step, we hope to trigger a scientific discussion on the value of a routine comparison of the two methods for regulatory submissions to potentially create a best practice that could help identify examples where the use of dynamic changes in modulator concentrations could make a difference to DDI risk assessment.

摘要

背景和目的

机制静态和动态生理药代动力学模型被用于临床药物开发中,以评估药物-药物相互作用(DDI)的风险。目前,机制静态模型仅用于筛选研究药物的 DDI 风险,而动态生理药代动力学模型则用于定量预测 DDI,以支持监管备案。由于赞助商开发生理药代动力学模型以及监管机构对模型进行审查都需要大量资源,因此我们探索了使用机制静态模型来支持监管备案的可能性,使用不同申请类别下向美国食品和药物管理局提交的具有代表性的生理药代动力学案例。

方法

使用与食品和药物管理局临床药理学审查中描述的相同数据和建模工作流程,为不同申请类别中的代表性案例使用机制静态模型进行 DDI 预测。我们假设,在机制静态模型中使用调节剂的未结合平均稳态浓度作为驱动浓度,应该会导致与基于生理的药代动力学建模相同的结论,用于非动态 DDI 风险评估指标,如血浆浓度-时间曲线下面积比值,只要为相互作用药物使用相同的输入数据。

结果

使用机制静态模型预测血浆浓度-时间曲线下面积比值的 DDI 预测结果,在所有不同申请类别的代表性案例中,与使用基于生理的药代动力学模型在食品和药物管理局审查中报告的结果大多相当。

结论

本研究报告的结果应鼓励使用最适合预期用途的模型,将基于生理的药代动力学模型的使用限制在利用其独特优势的应用中,例如进行假设情景测试以了解剂量间隔的影响,评估摄取和外排转运体的作用,从已研究人群外推到未研究人群的 DDI 效应,或评估 DDIs 对同时具有多种机制的受害药物暴露的影响。通过这第一步,我们希望引发关于两种方法用于监管备案的价值的科学讨论,以潜在地创建最佳实践,帮助确定使用调节剂浓度动态变化可能对 DDI 风险评估产生影响的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5680/10042977/90f98789e4eb/40262_2022_1204_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验