Amran Alia Iwani, Lim Si Jie, Muhd Noor Noor Dina, Salleh Abu Bakar, Oslan Siti Nurbaya
Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Microb Pathog. 2023 Mar;176:106025. doi: 10.1016/j.micpath.2023.106025. Epub 2023 Feb 6.
Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
季也蒙毕赤酵母是一种罕见的机会性真菌病原体,可导致人类致命的侵袭性念珠菌病。季也蒙毕赤酵母菌株SO是一种本地酵母分离株,具有巨大的工业价值,但对斑马鱼胚胎也具有致病性。与人类细胞外基质(ECM)蛋白结合的烯醇酶是真菌毒力因子之一。为了从分子水平理解其致病机制,特别是在罕见的季也蒙毕赤酵母中,本研究旨在使用生物信息学方法鉴定和表征季也蒙毕赤酵母菌株SO中潜在的与毒力相关的烯醇酶。采用轮廓隐马尔可夫模型在真菌蛋白质组中鉴定烯醇酶相关序列。序列分析表明,九个序列中只有一个(MgEno4581)表现出与致病性白色念珠菌中观察到的相似的强毒力特征。使用白色念珠菌烯醇酶(CaEno1;PDB ID:7vrd)作为同源建模模板,通过SWISS-MODEL预测的MgEno4581结构描绘了一个与CaEno1高度相同的基序,有助于ECM蛋白结合。与MgEno4581和CaEno1相比,酿酒酵母烯醇酶(ScEno)的ECM结合基序中的氨基酸取代(D234K、K235A、Y238H、K239D、G243K、V248C和Y254F)导致基序表面电荷发生变化。蛋白质-蛋白质对接表明,ScEno中的F253仅与人类纤溶酶原(HPG)发生疏水相互作用。在MgEno4581和CaEno1中均观察到氢键,表明在亲水性宿主微环境中与HPG的相互作用更强。因此,我们对MgEno4581的计算机模拟表征为其在季也蒙毕赤酵母引起的念珠菌病(真菌-宿主相互作用)中的潜在作用提供了新的视角,特别是对斑马鱼胚胎上的季也蒙毕赤酵母菌株SO,其模拟了免疫功能低下的个体,如之前所证明的那样。