Hwa Kuo-Yuan, Santhan Aravindan, Ganguly Anindita, Kanna Sharma Tata Sanjay
Graduate Institute of Energy and Optoelectronic Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC.
Graduate Institute of Energy and Optoelectronic Materials, National Taipei University of Technology, Taipei, Taiwan, ROC; Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC.
Chemosphere. 2023 Apr;320:138068. doi: 10.1016/j.chemosphere.2023.138068. Epub 2023 Feb 6.
The exploration of graphitic carbon nitride (g-CN), a two-dimensional (2D) metal-free polymer semiconducting material, is largely discussed due to its large specific surface area, high electrical conductivity, thermal stability, and adaptable electronic structure. The adaption of sulfur (S) and phosphorous (P) atoms into the layers of g-CN increases the electrochemical performance of detecting nilutamide (NT). The aggregation severity can be decreased by integrating S/P into g-CN, thereby improving surface area and electrical conductance. The g-CN, S/gCN, P/g-CN, and S/P/g-CN were studied with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET). The well-assigned S/P/g-CN exhibited a good crystalline structure with more active sites for improved electron transfer toward NT detection. Both differential pulse voltammetry (DPV) and amperometry (IT) was studied for NT detection. The electrochemical studies were done with a linear range of 0.019-1.17 μM to 5.36-1891.98 μM in DPV and 0.01 μM-158.3 μM in IT technique. The attained limit of detection in DPV analysis was 3.2 nM and with IT analysis 2.4 nM. The nanocomposite S/P/g-CN shows good selectivity towards NT. The fabricated electrode showed excellent repeatability, reproducibility, and stability, with a significant recovery range in real sample analysis.
石墨相氮化碳(g-CN)是一种二维(2D)无金属聚合物半导体材料,因其具有大比表面积、高电导率、热稳定性和适应性强的电子结构而备受关注。将硫(S)和磷(P)原子引入g-CN层中可提高检测尼鲁米特(NT)的电化学性能。通过将S/P引入g-CN可以降低聚集程度,从而提高表面积和电导率。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV)、热重分析(TGA)和布鲁诺尔-埃米特-泰勒(BET)对g-CN、S/gCN、P/g-CN和S/P/g-CN进行了研究。结构良好的S/P/g-CN表现出良好的晶体结构,具有更多活性位点,有利于改善向NT检测的电子转移。研究了差分脉冲伏安法(DPV)和安培法(IT)用于NT检测。电化学研究在DPV中的线性范围为0.019-1.17 μM至5.36-1891.98 μM,在IT技术中的线性范围为0.01 μM-158.3 μM。DPV分析中达到的检测限为3.2 nM,IT分析中为2.4 nM。纳米复合材料S/P/g-CN对NT表现出良好的选择性。制备的电极具有优异的重复性、再现性和稳定性,在实际样品分析中具有显著的回收率范围。