Suppr超能文献

使用随机参数有序logit模型对单车左右驶离道路碰撞事故的严重程度分析

Severity analysis of single-vehicle left and right run-off-road crashes using a random parameter ordered logit model.

作者信息

Okafor Sunday, Adanu Emmanuel Kofi, Lidbe Abhay, Jones Steven

机构信息

Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama.

Alabama Transportation Institute, The University of Alabama, Tuscaloosa, Alabama.

出版信息

Traffic Inj Prev. 2023;24(3):251-255. doi: 10.1080/15389588.2023.2174376. Epub 2023 Feb 8.

Abstract

OBJECTIVES

Single vehicle (SV) run-off-road crashes are a major cause of severe injury and fatality. Such crashes can result in different levels of severity depending on the direction (i.e., left or right) in which the vehicle runs off the road. This paper investigated the factors contributing to the crash severities of right run-off-road (R-ROR) and left run-off-road (L-ROR) SV crashes.

METHODS

The study used SV crash data from the City of Charlotte, North Carolina, covering 2014 to 2017. Two separate random parameter ordered logit (RPOL) models were developed to estimate the contributing factors to R-ROR and L-ROR SV crash severities. The impact of the explanatory variables on the crash severity outcomes was quantified using the models' direct pseudo-elasticities.

RESULTS

The model results showed that male drivers, Driving Under Influence (DUI), motorcycles, and dry road surfaces were significant contributing factors to R-ROR and L-ROR SV crash severities. Specifically for the R-ROR model, speeding, reckless driving, 1-2 lanes, and older drivers increased crash severity. For the L-ROR model, phone distraction, crossed centerline/median, 3-4 lanes, rain, and dark unlighted roadway increased crash severity.

CONCLUSIONS

Based on the estimated parameters for the common significant variables in the two models, it was inferred that L-ROR SV crashes are more likely to result in severe crashes compared to R-ROR SV crashes. Hence, this study contributes to the literature on ROR SV crashes by providing additional insight into contextual factors influencing ROR crash severity for more effective countermeasures.

摘要

目的

单车驶离道路碰撞事故是严重伤亡的主要原因。此类碰撞事故根据车辆驶离道路的方向(即向左或向右)会导致不同程度的严重程度。本文研究了导致右侧驶离道路(R-ROR)和左侧驶离道路(L-ROR)单车碰撞事故严重程度的因素。

方法

该研究使用了北卡罗来纳州夏洛特市2014年至2017年的单车碰撞事故数据。开发了两个单独的随机参数有序逻辑回归(RPOL)模型,以估计R-ROR和L-ROR单车碰撞事故严重程度的影响因素。使用模型的直接伪弹性来量化解释变量对碰撞严重程度结果的影响。

结果

模型结果表明,男性驾驶员、酒后驾车(DUI)、摩托车和干燥路面是R-ROR和L-ROR单车碰撞事故严重程度的重要影响因素。具体而言,对于R-ROR模型,超速、鲁莽驾驶、1至2条车道以及年长驾驶员会增加碰撞严重程度。对于L-ROR模型,电话分心、越过中心线/中央分隔带、3至4条车道、下雨和黑暗无照明道路会增加碰撞严重程度。

结论

基于两个模型中共同显著变量的估计参数,推断出与R-ROR单车碰撞事故相比,L-ROR单车碰撞事故更有可能导致严重碰撞。因此,本研究通过提供对影响驶离道路碰撞严重程度的背景因素的更多见解,为驶离道路单车碰撞事故的文献做出了贡献,以制定更有效的对策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验