文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

富含细菌的冻干粪便沉淀物和上清液(细菌计数减少)治疗感染患者的疗效-胶囊粪便微生物群转移的新方法。

Efficacy of lyophilised bacteria-rich faecal sediment and supernatant with reduced bacterial count for treating patients with Infection - A novel method for capsule faecal microbiota transfer.

机构信息

1stDepartment of Internal Medicine - Department of Infectology, University of Pécs, Medical School, Pécs, Hungary.

Department of Medical Microbiology and Immunology, University of Pécs, Medical School, Pécs, Hungary.

出版信息

Front Cell Infect Microbiol. 2023 Jan 23;13:1041384. doi: 10.3389/fcimb.2023.1041384. eCollection 2023.


DOI:10.3389/fcimb.2023.1041384
PMID:36756616
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9899802/
Abstract

BACKGROUND AND AIMS: Faecal microbiota transfer (FMT) has managed to earn its place in the infection (CDI) guidelines by having comparable efficacy and recurrence rate of fidaxomicin. After more than 100 successful FMT administration through nasogastric tube, we started using hard gelatine capsules filled with lyophilised faecal sediment and supernatant. Our main question was whether uncoated capsules (containing faecal sediment or supernatant) are comparable to the widely used nasogastric tubes in CDI. We also investigated the effect of storage and time on the survival rate of bacteria in the samples. METHODS: We compared the efficacy of our capsules to other treatment options of CDI at the Department of Infectology at the University of Pécs (Hungary). For our study, stool was collected from a single donor. We treated 10 patients with relapsing CDI, 5 of them received supernatant, 5 received sediment. Donor samples were stored on 4 different temperatures and tested to determine the survival rates of bacteria. As pilot projects, we also assessed the changes of bacterial taxa, protein- and lipid compositions. Moreover, we selected 4 patients to compare their samples prior and after FMT by using microbiome (16S amplicon sequencing), protein, and lipid analyses. RESULTS: 4 out of the 5 patients who received supernatant became symptomless within 2 days after FMT. In the sediment group 3 out of 5 patients were cured from CDI. Comparing the supernatant to the sediment, we found significantly lower number of colony-forming units in the supernatant. We found that -80°C is the most suitable temperature to store the samples. The stool lipid profiles of recipients showed a more diverse composition after FMT, and changes in the stool protein profiles were observed as well. In the microbiome analysis, we observed an increase in the alpha diversity after FMT. CONCLUSIONS: Our study of 10 patients showed good efficacy of lyophilised faecal supernatant using capsules. The single donor approach proved to be effective in our investigation. A significantly lower CFU number was sufficient for the effect, the separation can be achieved by widely available instruments. For storage temperature, -20°C was sufficient in our clinical practice.

摘要

背景和目的:粪便微生物群转移(FMT)在艰难梭菌感染(CDI)指南中具有相当的疗效和 fidaxomicin 复发率,因此得以占据一席之地。在通过鼻胃管成功进行了 100 多次 FMT 给药后,我们开始使用填充冻干粪便沉淀物和上清液的硬明胶胶囊。我们的主要问题是未涂层的胶囊(包含粪便沉淀物或上清液)是否与 CDI 中广泛使用的鼻胃管相当。我们还研究了储存和时间对样本中细菌存活率的影响。

方法:我们比较了我们的胶囊与佩奇大学传染病科(匈牙利)其他 CDI 治疗选择的疗效。为了我们的研究,粪便取自单个供体。我们治疗了 10 例复发性 CDI 患者,其中 5 例接受了上清液,5 例接受了沉淀物。供体样本在 4 种不同温度下储存并进行测试,以确定细菌的存活率。作为试点项目,我们还评估了细菌分类群、蛋白质和脂质组成的变化。此外,我们选择了 4 名患者,通过使用微生物组(16S 扩增子测序)、蛋白质和脂质分析,比较他们 FMT 前后的样本。

结果:接受上清液的 5 名患者中有 4 名在 FMT 后 2 天内症状消失。在沉淀物组中,5 名患者中有 3 名治愈了 CDI。将上清液与沉淀物进行比较,我们发现上清液中的菌落形成单位数量明显较低。我们发现 -80°C 是储存样本的最佳温度。接受者的粪便脂质谱在 FMT 后显示出更丰富的组成,粪便蛋白谱也发生了变化。在微生物组分析中,我们观察到 FMT 后 alpha 多样性增加。

结论:我们对 10 名患者的研究表明,使用胶囊冻干粪便上清液具有良好的疗效。单供体方法在我们的研究中被证明是有效的。较低的 CFU 数量足以达到效果,分离可以通过广泛可用的仪器来实现。对于储存温度,在我们的临床实践中,-20°C 就足够了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/7631b3dee4b0/fcimb-13-1041384-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/ca2ef1543ea3/fcimb-13-1041384-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/1cc7b08fc63e/fcimb-13-1041384-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/fcd0398e3671/fcimb-13-1041384-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/ee4651971238/fcimb-13-1041384-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/5d39aceaa823/fcimb-13-1041384-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/594a1bbc75e2/fcimb-13-1041384-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/bf029000360f/fcimb-13-1041384-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/f4a50bb5ffdf/fcimb-13-1041384-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/3af796f29c47/fcimb-13-1041384-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/5c2bc03a6761/fcimb-13-1041384-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/478b6f1a97f7/fcimb-13-1041384-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/7631b3dee4b0/fcimb-13-1041384-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/ca2ef1543ea3/fcimb-13-1041384-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/1cc7b08fc63e/fcimb-13-1041384-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/fcd0398e3671/fcimb-13-1041384-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/ee4651971238/fcimb-13-1041384-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/5d39aceaa823/fcimb-13-1041384-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/594a1bbc75e2/fcimb-13-1041384-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/bf029000360f/fcimb-13-1041384-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/f4a50bb5ffdf/fcimb-13-1041384-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/3af796f29c47/fcimb-13-1041384-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/5c2bc03a6761/fcimb-13-1041384-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/478b6f1a97f7/fcimb-13-1041384-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e4/9899802/7631b3dee4b0/fcimb-13-1041384-g012.jpg

相似文献

[1]
Efficacy of lyophilised bacteria-rich faecal sediment and supernatant with reduced bacterial count for treating patients with Infection - A novel method for capsule faecal microbiota transfer.

Front Cell Infect Microbiol. 2023

[2]
How to Apply FMT More Effectively, Conveniently and Flexible - A Comparison of FMT Methods.

Front Cell Infect Microbiol. 2021

[3]
Faecal microbiota transplantation in the treatment of recurrent intestinal Clostridioides difficile infection - a ten-year single-center experience.

Cas Lek Cesk. 2022

[4]
Fecal Microbiota Transplantation (FMT) with Colonoscopy Is Superior to Enema and Nasogastric Tube While Comparable to Capsule for the Treatment of Recurrent Clostridioides difficile Infection: A Systematic Review and Meta-Analysis.

Dig Dis Sci. 2021-2

[5]
Factors Related to Outcomes of Fecal Microbiota Transplantation in Patients with Infection.

Gut Liver. 2021-1-15

[6]
Design and manufacture of a lyophilised faecal microbiota capsule formulation to GMP standards.

J Control Release. 2022-10

[7]
Faecal microbiota transplantation for recurrent Clostridioides difficile infection: experience with lyophilized oral capsules.

J Hosp Infect. 2020-6

[8]
Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent Clostridium difficile infection and/or ulcerative colitis.

PLoS One. 2018-1-31

[9]
Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent infection.

Gut. 2019-2-11

[10]
Randomised clinical trial: faecal microbiota transplantation for recurrent Clostridum difficile infection - fresh, or frozen, or lyophilised microbiota from a small pool of healthy donors delivered by colonoscopy.

Aliment Pharmacol Ther. 2017-2-21

引用本文的文献

[1]
Life-long microbiome rejuvenation improves intestinal barrier function and inflammaging in mice.

Microbiome. 2025-4-2

[2]
Evaluating Bacterial Viability in Faecal Microbiota Transplantation: A Comparative Analysis of In Vitro Cultivation and Membrane Integrity Methods.

J Clin Lab Anal. 2024-10

[3]
Encapsulation protocol for fecal microbiota transplantation.

Front Cell Infect Microbiol. 2024

[4]
Epithelial Dual Oxidase 2 Shapes the Mucosal Microbiome and Contributes to Inflammatory Susceptibility.

Antioxidants (Basel). 2023-10-21

[5]
Migraine as a Disease Associated with Dysbiosis and Possible Therapy with Fecal Microbiota Transplantation.

Microorganisms. 2023-8-14

本文引用的文献

[1]
SER-109, an Oral Microbiome Therapy for Recurrent Infection.

N Engl J Med. 2022-1-20

[2]
Clinical Practice Guidelines for Fecal Microbiota Transplantation in Korea.

J Neurogastroenterol Motil. 2022-1-30

[3]
Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis.

Cell Metab. 2021-12-7

[4]
How to Apply FMT More Effectively, Conveniently and Flexible - A Comparison of FMT Methods.

Front Cell Infect Microbiol. 2021

[5]
Microbial Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients.

J Crohns Colitis. 2021-1-13

[6]
High-Throughput Stool Metaproteomics: Method and Application to Human Specimens.

mSystems. 2020-6-30

[7]
SCFA: mechanisms and functional importance in the gut.

Proc Nutr Soc. 2021-2

[8]
Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases.

Gastroenterology. 2019-7-18

[9]
Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection.

Gastroenterology. 2019-1-2

[10]
Experiences with fecal microbiota transplantation in infections via upper gastrointestinal tract.

Acta Microbiol Immunol Hung. 2019-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索