Suppr超能文献

利用深度集成森林对伊朗德黑兰的 MODIS MAIA 气溶胶光学厚度进行 PM2.5 的高分辨率制图。

Using deep ensemble forest for high-resolution mapping of PM2.5 from MODIS MAIAC AOD in Tehran, Iran.

机构信息

Faculty of Civil Engineering and Transportation, University of Isfahan, Azadi Square, Isfahan, 8174673441, Iran.

出版信息

Environ Monit Assess. 2023 Feb 9;195(3):377. doi: 10.1007/s10661-023-10951-1.

Abstract

High-resolution mapping of PM2.5 concentration over Tehran city is challenging because of the complicated behavior of numerous sources of pollution and the insufficient number of ground air quality monitoring stations. Alternatively, high-resolution satellite Aerosol Optical Depth (AOD) data can be employed for high-resolution mapping of PM2.5. For this purpose, different data-driven methods have been used in the literature. Recently, deep learning methods have demonstrated their ability to estimate PM2.5 from AOD data. However, these methods have several weaknesses in solving the problem of estimating PM2.5 from satellite AOD data. In this paper, the potential of the deep ensemble forest method for estimating the PM2.5 concentration from AOD data was evaluated. The results showed that the deep ensemble forest method with [Formula: see text] gives a higher accuracy of PM2.5 estimation than deep learning methods ([Formula: see text]) as well as classic data-driven methods such as random forest ([Formula: see text]). Additionally, the estimated values of PM2.5 using the deep ensemble forest algorithm were used along with ground data to generate a high-resolution map of PM2.5. Evaluation of produced PM2.5 map revealed the good performance of the deep ensemble forest for modeling the variation of PM2.5 in the city of Tehran.

摘要

在德黑兰市进行 PM2.5 浓度的高分辨率测绘具有挑战性,因为存在大量污染源,且地面空气质量监测站的数量不足,这导致其行为非常复杂。或者,可以使用高分辨率卫星气溶胶光学深度(AOD)数据进行 PM2.5 的高分辨率测绘。为此,文献中已经使用了不同的数据驱动方法。最近,深度学习方法已经证明了它们从 AOD 数据估算 PM2.5 的能力。然而,这些方法在解决从卫星 AOD 数据估算 PM2.5 的问题方面存在一些弱点。在本文中,评估了深度集成森林方法从 AOD 数据估算 PM2.5 浓度的潜力。结果表明,与深度学习方法([Formula: see text])以及经典数据驱动方法(如随机森林([Formula: see text]))相比,具有[Formula: see text]的深度集成森林方法可以更准确地估算 PM2.5。此外,还使用深度集成森林算法估算的 PM2.5 值与地面数据一起生成 PM2.5 的高分辨率地图。对生成的 PM2.5 地图进行评估表明,深度集成森林在模拟德黑兰市 PM2.5 的变化方面表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验