Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
J Am Soc Nephrol. 2023 May 1;34(5):772-792. doi: 10.1681/ASN.0000000000000087. Epub 2023 Feb 9.
AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort.
Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown.
Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation.
We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans.
CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
急性肾损伤(AKI)是一种主要的临床并发症,导致高死亡率,但在过去几十年的密集研究并未导致有针对性的预防或治疗措施。在啮齿动物模型中,热量限制(CR)和短暂缺氧可显著预防 AKI,最近对鼠肾的比较转录组分析确定犬尿酸酶(KYNU)为共同的下游靶标。本研究表明,KYNU 作为从头烟酰胺腺嘌呤二核苷酸(NAD+)生物合成途径中的关键因子,强烈促进 CR 介导的保护作用。重要的是,CR 和 NAD+生物合成之间的联系可以在人类队列中得到重现。
临床实践缺乏治疗 AKI 的策略。有趣的是,低氧和热量限制(CR)预处理在啮齿动物 AKI 模型中具有高度保护作用。然而,这一过程的潜在分子机制尚不清楚。
通过 CRISPR 生成犬尿酸酶(KYNU)敲除小鼠,并对 CR 或自由饮食条件下缺血再灌注损伤前后的鼠肾进行比较转录组、蛋白质组和代谢组分析。此外,还使用乙酰-赖氨酸富集和质谱分析法来评估蛋白质乙酰化。
我们确定 KYNU 是 CR 的下游靶标,并表明 KYNU 强烈有助于 CR 的保护作用。KYNU 依赖性从头 NAD+(NAD+)生物合成途径是 CR 相关 NAD+水平维持所必需的。这一发现与 CR 处理动物中蛋白质乙酰化减少有关,特别是影响能量代谢中的酶。重要的是,CR 对新 NAD+生物合成途径代谢物的影响可以在人类中重现。
CR 在 IRI 背景下诱导新的 NAD+合成途径,对其充分的肾脏保护潜力至关重要。差异蛋白乙酰化可能是 NAD+、CR 和肾脏保护之间关系的分子机制。