Duan Kai, Zhou Mengyang, Wang Yong, Oberholzer Jose, Lo Joe F
Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA.
Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA.
Microsyst Nanoeng. 2023 Feb 7;9:14. doi: 10.1038/s41378-022-00482-z. eCollection 2023.
One distinct advantage of microfluidic-based cell assays is their scalability for multiple concentrations or gradients. Microfluidic scaling can be extremely powerful when combining multiple parameters and modalities. Moreover, in situ stimulation and detection eliminates variability between individual bioassays. However, conventional microfluidics must combat diffusion, which limits the spatial distance and time for molecules traveling through microchannels. Here, we leveraged a multilayered microfluidic approach to integrate a novel oxygen gradient (0-20%) with an enhanced hydrogel sensor to study pancreatic beta cells. This enabled our microfluidics to achieve spatiotemporal detection that is difficult to achieve with traditional microfluidics. Using this device, we demonstrated the in situ detection of calcium, insulin, and ATP (adenosine triphosphate) in response to glucose and oxygen stimulation. Specifically, insulin was quantified at levels as low as 25 pg/mL using our imaging technique. Furthermore, by analyzing the spatial detection data dynamically over time, we uncovered a new relationship between oxygen and beta cell oscillations. We observed an optimum oxygen level between 10 and 12%, which is neither hypoxic nor normoxic in the conventional cell culture sense. These results provide evidence to support the current islet oscillator model. In future applications, this spatial microfluidic technique can be adapted for discrete protein detection in a robust platform to study numerous oxygen-dependent tissue dysfunctions.
基于微流体的细胞检测的一个显著优势在于其可针对多种浓度或梯度进行扩展。当结合多个参数和模式时,微流体扩展会极具威力。此外,原位刺激和检测消除了各个生物检测之间的变异性。然而,传统微流体必须应对扩散问题,这限制了分子在微通道中传输的空间距离和时间。在此,我们利用一种多层微流体方法,将新型氧梯度(0 - 20%)与增强型水凝胶传感器相结合来研究胰腺β细胞。这使我们的微流体能够实现传统微流体难以达成的时空检测。使用该装置,我们展示了在葡萄糖和氧气刺激下对钙、胰岛素和三磷酸腺苷(ATP)的原位检测。具体而言,使用我们的成像技术,胰岛素的定量检测下限可达25 pg/mL。此外,通过随时间动态分析空间检测数据,我们发现了氧气与β细胞振荡之间的新关系。我们观察到最佳氧水平在10%至12%之间,从传统细胞培养意义上讲,这既非低氧也非常氧。这些结果为支持当前的胰岛振荡器模型提供了证据。在未来应用中,这种空间微流体技术可适用于在一个强大的平台中进行离散蛋白质检测,以研究众多与氧相关的组织功能障碍。