Suppr超能文献

晚期卵巢癌肿瘤细胞减灭术后残留病灶的预测因素

Predictors of residual disease after debulking surgery in advanced stage ovarian cancer.

作者信息

Abbas-Aghababazadeh Farnoosh, Sasamoto Naoko, Townsend Mary K, Huang Tianyi, Terry Kathryn L, Vitonis Allison F, Elias Kevin M, Poole Elizabeth M, Hecht Jonathan L, Tworoger Shelley S, Fridley Brooke L

机构信息

Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.

University Health Network, Princess Margaret Cancer Center, Toronto, ON, Canada.

出版信息

Front Oncol. 2023 Jan 24;13:1090092. doi: 10.3389/fonc.2023.1090092. eCollection 2023.

Abstract

OBJECTIVE

Optimal debulking with no macroscopic residual disease strongly predicts ovarian cancer survival. The ability to predict likelihood of optimal debulking, which may be partially dependent on tumor biology, could inform clinical decision-making regarding use of neoadjuvant chemotherapy. Thus, we developed a prediction model including epidemiological factors and tumor markers of residual disease after primary debulking surgery.

METHODS

Univariate analyses examined associations of 11 pre-diagnosis epidemiologic factors (n=593) and 24 tumor markers (n=204) with debulking status among incident, high-stage, epithelial ovarian cancer cases from the Nurses' Health Studies and New England Case Control study. We used Bayesian model averaging (BMA) to develop prediction models of optimal debulking with 5x5-fold cross-validation and calculated the area under the curve (AUC).

RESULTS

Current aspirin use was associated with lower odds of optimal debulking compared to never use (OR=0.52, 95%CI=0.31-0.86) and two tissue markers, ADRB2 (OR=2.21, 95%CI=1.23-4.41) and FAP (OR=1.91, 95%CI=1.24-3.05) were associated with increased odds of optimal debulking. The BMA selected aspirin, parity, and menopausal status as the epidemiologic/clinical predictors with the posterior effect probability ≥20%. While the prediction model with epidemiologic/clinical predictors had low performance (average AUC=0.49), the model adding tissue biomarkers showed improved, but weak, performance (average AUC=0.62).

CONCLUSIONS

Addition of ovarian tumor tissue markers to our multivariable prediction models based on epidemiologic/clinical data slightly improved the model performance, suggesting debulking status may be in part driven by tumor characteristics. Larger studies are warranted to identify those at high risk of poor surgical outcomes informing personalized treatment.

摘要

目的

实现无肉眼可见残留病灶的最佳肿瘤细胞减灭术是卵巢癌生存的有力预测指标。预测最佳肿瘤细胞减灭术可能性的能力(这可能部分取决于肿瘤生物学特性)可为新辅助化疗的临床决策提供依据。因此,我们开发了一种预测模型,该模型纳入了初次肿瘤细胞减灭术后残留病灶的流行病学因素和肿瘤标志物。

方法

在护士健康研究和新英格兰病例对照研究中的新发、晚期上皮性卵巢癌病例中,单因素分析检验了11个诊断前流行病学因素(n = 593)和24种肿瘤标志物(n = 204)与肿瘤细胞减灭状态的相关性。我们使用贝叶斯模型平均法(BMA),通过5×5倍交叉验证开发最佳肿瘤细胞减灭术的预测模型,并计算曲线下面积(AUC)。

结果

与从未使用阿司匹林相比,当前使用阿司匹林与最佳肿瘤细胞减灭术的较低几率相关(OR = 0.52,95%CI = 0.31 - 0.86),并且两种组织标志物ADRB2(OR = 2.21,95%CI = 1.23 - 4.41)和FAP(OR = 1.91,95%CI = 1.24 - 3.05)与最佳肿瘤细胞减灭术几率增加相关。BMA选择阿司匹林、生育史和绝经状态作为后验效应概率≥20%的流行病学/临床预测指标。虽然包含流行病学/临床预测指标的预测模型表现不佳(平均AUC = 0.49),但添加组织生物标志物的模型表现有所改善,但仍较弱(平均AUC = 0.62)。

结论

在基于流行病学/临床数据的多变量预测模型中添加卵巢肿瘤组织标志物可略微改善模型表现,这表明肿瘤细胞减灭状态可能部分由肿瘤特征驱动。有必要开展更大规模的研究,以识别手术预后不良的高危人群,为个性化治疗提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b836/9902593/a6e579db1a5d/fonc-13-1090092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验