文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Coupling Au-loaded magnetic frameworks to photonic crystal for the improvement of photothermal heating effect in SERS.

作者信息

Wang Tianxing, Xiao Panpan, Ye Li, Zhu Pengcheng, Zhuang Lin

机构信息

School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China

School of Electronics and Information Technology, Sun Yat-sen University Guangzhou 510006 China.

出版信息

RSC Adv. 2023 Feb 8;13(8):5002-5012. doi: 10.1039/d2ra07262a. eCollection 2023 Feb 6.


DOI:10.1039/d2ra07262a
PMID:36762088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9907568/
Abstract

The combination of plasmonic metals and photonic crystal (PC) structure is considered to have potential for further enhancement of the surface-enhanced Raman scattering (SERS) effect in comparison with conventional metal SERS substrates. Many studies have suggested that SERS signals probably suffer from an often-neglected effect of strong surface plasmon resonance (SPR)-induced photothermal heating during SERS detection. Herein, we have discovered that the photothermal heating problem arises in a traditional hybrid substrate that is prepared by doping plasmonic Au nanoparticles (NPs) into the voids of an opal PC (Au-PC). This happens mainly because excess Au agglomerates formed by non-uniformly distributed Au NPs can cause a strong SPR effect under laser illumination. To fully address this issue, we have employed an improved hybrid substrate that is fabricated by substituting Au NPs in Au-PC with an Au-loaded magnetic framework (AuMF). The AuMF can effectively prevent the aggregation of Au NPs and ensure sufficient hot spots for SERS. This novel substrate prepared by doping AuMFs into a PC (AuMF-PC) was free of strong photothermal heating and showed high SERS intensity and reproducibility of the SERS signal compared with Au-PC. For practical applications, we have demonstrated AuMF-PC as an appropriate candidate for the SERS assay of the trace thiol pesticide thiram, and it enables recycling and reuse to achieve low cost.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/69c2e214b406/d2ra07262a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/51ce50886b62/d2ra07262a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/b286e796cdbf/d2ra07262a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/b9577077c6f1/d2ra07262a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/05e1d50403ee/d2ra07262a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/68802823a8c9/d2ra07262a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/406a3860f73d/d2ra07262a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/4f9e52d62dfe/d2ra07262a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/51587b9be0f5/d2ra07262a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/69c2e214b406/d2ra07262a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/51ce50886b62/d2ra07262a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/b286e796cdbf/d2ra07262a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/b9577077c6f1/d2ra07262a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/05e1d50403ee/d2ra07262a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/68802823a8c9/d2ra07262a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/406a3860f73d/d2ra07262a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/4f9e52d62dfe/d2ra07262a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/51587b9be0f5/d2ra07262a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d69b/9907568/69c2e214b406/d2ra07262a-f9.jpg

相似文献

[1]
Coupling Au-loaded magnetic frameworks to photonic crystal for the improvement of photothermal heating effect in SERS.

RSC Adv. 2023-2-8

[2]
Preparation of SiO@Au Nanoparticle Photonic Crystal Array as Surface-Enhanced Raman Scattering (SERS) Substrate.

Nanomaterials (Basel). 2023-7-25

[3]
Hybrid Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Ammonium Nitrate, Thiram, and Nile Blue.

ACS Omega. 2022-4-28

[4]
Facile synthesis of FeO@Au core-shell nanocomposite as a recyclable magnetic surface enhanced Raman scattering substrate for thiram detection.

Nanotechnology. 2019-11-15

[5]
Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection.

Nanomaterials (Basel). 2022-11-28

[6]
Facile coupling of plasmonic Au-NPs on ZnS NFs as a robust SERS substrate for toluidine blue detection and degradation.

Anal Chim Acta. 2024-11-1

[7]
Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity.

ACS Appl Mater Interfaces. 2020-10-7

[8]
Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.

Anal Chim Acta. 2013-11-22

[9]
Dynamic modulation of a surface-enhanced Raman scattering signal by a varying magnetic field.

Opt Express. 2023-4-10

[10]
MOF-derived multi-"hotspot" 3D Au/MOF-808 (Zr) nanostructures as SERS substrates for the ultrasensitive determination of thiram.

Mikrochim Acta. 2024-5-7

引用本文的文献

[1]
High-performance flower-like and biocompatible nickel-coated FeO@SiO magnetic nanoparticles decorated on a graphene electrocatalyst for the oxygen evolution reaction.

Nanoscale Adv. 2023-8-17

[2]
Preparation of SiO@Au Nanoparticle Photonic Crystal Array as Surface-Enhanced Raman Scattering (SERS) Substrate.

Nanomaterials (Basel). 2023-7-25

本文引用的文献

[1]
Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection.

Nanomaterials (Basel). 2022-11-28

[2]
Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots.

Nanoscale. 2021-1-14

[3]
SERS chip fabricated by the thermal effect in a double-metal-cladding waveguide.

Appl Opt. 2020-12-10

[4]
Porous carbon nanowire array for surface-enhanced Raman spectroscopy.

Nat Commun. 2020-9-24

[5]
Preparation of Monolayer Photonic Crystals from Ag Nanobulge-Deposited SiO Particles as Substrates for Reproducible SERS Assay of Trace Thiol Pesticide.

Nanomaterials (Basel). 2020-6-19

[6]
Near-Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon Photonic Crystals.

Nanomaterials (Basel). 2019-3-12

[7]
Porous Silicon Photonic Crystals Coated with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using SERS.

Nanomaterials (Basel). 2018-10-23

[8]
Quantifying Surface Temperature of Thermoplasmonic Nanostructures.

J Am Chem Soc. 2018-10-24

[9]
Plasmonic-Photonic Interference Coupling in Submicrometer Amorphous TiO-Ag Nanoarchitectures.

Langmuir. 2017-10-17

[10]
Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs.

Nanoscale. 2016-11-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索