Rodríguez Ángela, Maneiro María, Lence Emilio, Otero José M, van Raaij Mark J, Thompson Paul, Hawkins Alastair R, González-Bello Concepción
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain.
Front Mol Biosci. 2023 Jan 24;10:1111598. doi: 10.3389/fmolb.2023.1111598. eCollection 2023.
Irreversible inhibition of the enzyme type I dehydroquinase (DHQ1), a promising target for anti-virulence drug development, has been explored by enhancing the electrophilicity of specific positions of the ligand towards covalent lysine modification. For ligand design, we made use of the advantages offered by the intrinsic acid-base properties of the amino substituents introduced in the quinate scaffold, namely compounds - ( configuration at C3), to generate a potential leaving group, as well as the recognition pattern of the enzyme. The reactivity of the C2-C3 bond (Re face) in the scaffold was also explored using compound . The results of the present study show that replacement of the C3 hydroxy group of (-)-quinic acid by a hydroxyamino substituent (compound ) provides a time-dependent irreversible inhibitor, while compound , in which the latter functionality was substituted by an amino group, and the introduction of an oxirane ring at C2-C3 bond, compound , do not allow covalent modification of the enzyme. These outcomes were supported by resolution of the crystal structures of DHQ1 from (-DHQ1) and (-DHQ1) chemically modified by at a resolution of 1.65 and 1.90 Å, respectively, and of -DHQ1 in the complex with (1.55 Å). The combination of these structural studies with extensive molecular dynamics simulation studies allowed us to understand the molecular basis of the type of inhibition observed. This study is a good example of the importance of achieving the correct geometry between the reactive center of the ligand (electrophile) and the enzyme nucleophile (lysine residue) to allow selective covalent modification. The outcomes obtained with the hydroxyamino derivative also open up new possibilities in the design of irreversible inhibitors based on the use of amino substituents.
I型脱氢奎尼酸酶(DHQ1)是抗毒力药物开发中一个很有前景的靶点,通过增强配体特定位置对共价赖氨酸修饰的亲电性,对其进行了不可逆抑制的研究。在配体设计中,我们利用了奎尼酸支架中引入的氨基取代基的内在酸碱性质所提供的优势,即化合物 - (C3位构型),来生成一个潜在的离去基团,以及酶的识别模式。还使用化合物研究了支架中C2 - C3键(Re面)的反应性。本研究结果表明,用羟氨基取代基取代( - ) - 奎尼酸的C3羟基(化合物 )可提供一种时间依赖性的不可逆抑制剂,而化合物 (其中后一种官能团被氨基取代)以及在C2 - C3键处引入环氧乙烷环的化合物 则不能对该酶进行共价修饰。这些结果分别通过分辨率为1.65 Å和1.90 Å的经 化学修饰的来自 ( - DHQ1)和 ( - DHQ1)的DHQ1晶体结构的解析以及与 (1.55 Å)形成复合物的 - DHQ1晶体结构的解析得到了支持。这些结构研究与广泛的分子动力学模拟研究相结合,使我们能够理解所观察到的抑制类型的分子基础。这项研究很好地说明了配体(亲电试剂)的反应中心与酶亲核试剂(赖氨酸残基)之间实现正确几何结构以实现选择性共价修饰的重要性。用羟氨基衍生物 获得的结果也为基于氨基取代基的不可逆抑制剂设计开辟了新的可能性。