Smeyers Robin, Milošević Milorad V, Covaci Lucian
Department of Physics and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil.
Nanoscale. 2023 Mar 2;15(9):4561-4569. doi: 10.1039/d2nr07171a.
When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moiré pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moiré stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moiré-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moiré mini-band in width against the moiré-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10 meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.
当使用六方氮化硼(hBN)作为石墨烯的衬底时,产生的莫尔图案会形成次级狄拉克点。通过将多层石墨烯封装在对齐的hBN薄片中,可控的莫尔堆叠可能会带来更丰富的益处。通过对原子弛豫异质结构进行先进的紧束缚模拟,我们在此表明,在选定的莫尔堆叠构型中,次级狄拉克点处的能隙可以打开,并且与异质结构的任何额外垂直栅极无关。另一方面,栅极可以广泛地调节主狄拉克点处的能隙,从而可能强烈压缩第一个莫尔微带的宽度,使其与次级狄拉克点处的莫尔诱导能隙相对抗。我们揭示,在hBN封装的双层石墨烯中,这种新机制在适度栅极作用下可导致孤立能带的平坦度低于10毫电子伏特,从而为按需实现电子控制的强关联态提供了一条便捷途径。