Suppr超能文献

训练机器学习算法进行自动面部编码:情绪面部表情典型性的作用。

Training machine learning algorithms for automatic facial coding: The role of emotional facial expressions' prototypicality.

机构信息

Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.

出版信息

PLoS One. 2023 Feb 10;18(2):e0281309. doi: 10.1371/journal.pone.0281309. eCollection 2023.

Abstract

Automatic facial coding (AFC) is a promising new research tool to efficiently analyze emotional facial expressions. AFC is based on machine learning procedures to infer emotion categorization from facial movements (i.e., Action Units). State-of-the-art AFC accurately classifies intense and prototypical facial expressions, whereas it is less accurate for non-prototypical and less intense facial expressions. A potential reason might be that AFC is typically trained with standardized and prototypical facial expression inventories. Because AFC would be useful to analyze less prototypical research material as well, we set out to determine the role of prototypicality in the training material. We trained established machine learning algorithms either with standardized expressions from widely used research inventories or with unstandardized emotional facial expressions obtained in a typical laboratory setting and tested them on identical or cross-over material. All machine learning models' accuracies were comparable when trained and tested with held-out dataset from the same dataset (acc. = [83.4% to 92.5%]). Strikingly, we found a substantial drop in accuracies for models trained with the highly prototypical standardized dataset when tested in the unstandardized dataset (acc. = [52.8%; 69.8%]). However, when they were trained with unstandardized expressions and tested with standardized datasets, accuracies held up (acc. = [82.7%; 92.5%]). These findings demonstrate a strong impact of the training material's prototypicality on AFC's ability to classify emotional faces. Because AFC would be useful for analyzing emotional facial expressions in research or even naturalistic scenarios, future developments should include more naturalistic facial expressions for training. This approach will improve the generalizability of AFC to encode more naturalistic facial expressions and increase robustness for future applications of this promising technology.

摘要

自动面部编码(AFC)是一种很有前途的新研究工具,可用于高效分析情绪面部表情。AFC 基于机器学习程序,从面部运动(即动作单元)推断情绪分类。最先进的 AFC 可以准确地对强烈和典型的面部表情进行分类,而对于非典型和不那么强烈的面部表情则不太准确。一个潜在的原因可能是 AFC 通常是使用标准化和典型的面部表情库进行训练的。由于 AFC 也将有助于分析不太典型的研究材料,我们着手确定原型在训练材料中的作用。我们使用广泛使用的研究库中的标准化表情或在典型实验室环境中获得的非标准化情绪面部表情来训练已建立的机器学习算法,并在相同或交叉的材料上对其进行测试。当使用来自同一数据集的保留数据集进行训练和测试时,所有机器学习模型的准确性都相当(准确度=[83.4%至 92.5%])。令人惊讶的是,当使用高度典型的标准化数据集进行训练并在非标准化数据集中进行测试时,模型的准确性会大幅下降(准确度=[52.8%;69.8%])。然而,当它们使用非标准化的表情进行训练并使用标准化数据集进行测试时,准确性仍然保持不变(准确度=[82.7%;92.5%])。这些发现表明训练材料的原型对 AFC 分类情绪面孔的能力有很强的影响。由于 AFC 对于分析研究中甚至自然场景中的情绪面部表情非常有用,因此未来的发展应该包括更多的自然表情进行训练。这种方法将提高 AFC 对更自然表情进行编码的泛化能力,并提高该有前途技术未来应用的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d753/9916590/5d6146921681/pone.0281309.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验