Suppr超能文献

周细胞与脑、心血流的调控

Pericytes and the Control of Blood Flow in Brain and Heart.

机构信息

Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; email:

Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

出版信息

Annu Rev Physiol. 2023 Feb 10;85:137-164. doi: 10.1146/annurev-physiol-031522-034807.

Abstract

Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary K and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.

摘要

周细胞附着在毛细血管表面,在调节局部血流方面发挥着重要作用。最近,利用光遗传学工具和基因编码报告基因,结合共聚焦和多光子成像技术,对周细胞的 3D 结构、解剖组织和生理学进行了详细的研究。这些研究揭示了周细胞的新功能和形态特征,如脑内的隧道纳米管和心脏内的隧道微管。在这里,我们讨论了目前对周细胞在脑和心脏血流控制中的作用的理解状态,由于这些组织的独特时空代谢需求,其功能可能有所不同。我们还概述了电代谢信号传递的新概念,这是一个普遍的机制框架,通过周细胞和血管平滑肌细胞将组织代谢状态与血流调节联系起来,毛细血管 K 和 Kir2.1 通道作为主要传感器。最后,我们提出了尚未解决的主要问题,并概述了如何解决这些问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/10280497/a2e1abf4cf4f/nihms-1877508-f0001.jpg

相似文献

1
Pericytes and the Control of Blood Flow in Brain and Heart.
Annu Rev Physiol. 2023 Feb 10;85:137-164. doi: 10.1146/annurev-physiol-031522-034807.
2
The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes.
Front Cell Neurosci. 2020 Dec 18;14:601324. doi: 10.3389/fncel.2020.601324. eCollection 2020.
4
ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7461-7470. doi: 10.1073/pnas.1922095117. Epub 2020 Mar 13.
5
Interpericyte tunnelling nanotubes regulate neurovascular coupling.
Nature. 2020 Sep;585(7823):91-95. doi: 10.1038/s41586-020-2589-x. Epub 2020 Aug 12.
6
K channel-dependent electrical signaling links capillary pericytes to arterioles during neurovascular coupling.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2405965121. doi: 10.1073/pnas.2405965121. Epub 2024 Dec 4.
7
Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2023749118.
8
Metabolic-vascular coupling in skeletal muscle: A potential role for capillary pericytes?
Clin Exp Pharmacol Physiol. 2020 Mar;47(3):520-528. doi: 10.1111/1440-1681.13208. Epub 2019 Nov 21.
9
Brain capillary pericytes and neurovascular coupling.
Comp Biochem Physiol A Mol Integr Physiol. 2021 Apr;254:110893. doi: 10.1016/j.cbpa.2020.110893. Epub 2021 Jan 6.

引用本文的文献

1
Pericytes in mouse heart.
Front Physiol. 2025 Jul 30;16:1631407. doi: 10.3389/fphys.2025.1631407. eCollection 2025.
2
Screening and identification of muscle pericyte selective markers.
Sci Rep. 2025 Aug 7;15(1):28874. doi: 10.1038/s41598-025-14225-3.
3
The heart-brain axis: neurocognitive frailty in heart failure.
J Neurol. 2025 Jul 21;272(8):522. doi: 10.1007/s00415-025-13257-z.
4
A theoretical model for oxygen transport to the cerebral cortex: effects of flow redistribution by penetrating arterioles.
Microvasc Res. 2025 Sep;161:104836. doi: 10.1016/j.mvr.2025.104836. Epub 2025 Jun 26.
5
Vascular (dys)function in the failing heart.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01163-w.
7
K channels and cardioprotection.
Arh Farm (Belgr). 2024;74(5):625-657. doi: 10.5937/arhfarm74-51604. Epub 2024 Nov 1.
8
Pericytes in hematogenous metastasis: mechanistic insights and therapeutic approaches.
Cell Oncol (Dordr). 2025 May 20. doi: 10.1007/s13402-025-01073-6.
9
Blood-Brain Barrier (BBB) Dysfunction in CNS Diseases: Paying Attention to Pericytes.
CNS Neurosci Ther. 2025 May;31(5):e70422. doi: 10.1111/cns.70422.
10
K channel inhibition-induced hyporemia in skeletal muscle: No evidence for pre-capillary sphincter action.
Microvasc Res. 2025 Jul;160:104808. doi: 10.1016/j.mvr.2025.104808. Epub 2025 Mar 29.

本文引用的文献

2
KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling.
Dev Cell. 2022 Jun 6;57(11):1383-1399.e7. doi: 10.1016/j.devcel.2022.04.019. Epub 2022 May 18.
3
Adenosine signaling activates ATP-sensitive K channels in endothelial cells and pericytes in CNS capillaries.
Sci Signal. 2022 Mar 29;15(727):eabl5405. doi: 10.1126/scisignal.abl5405.
4
Astrocyte regulation of cerebral blood flow during hypoglycemia.
J Cereb Blood Flow Metab. 2022 Aug;42(8):1534-1546. doi: 10.1177/0271678X221089091. Epub 2022 Mar 17.
5
Endothelial Ion Channels and Cell-Cell Communication in the Microcirculation.
Front Physiol. 2022 Feb 8;13:805149. doi: 10.3389/fphys.2022.805149. eCollection 2022.
6
A human brain vascular atlas reveals diverse mediators of Alzheimer's risk.
Nature. 2022 Mar;603(7903):885-892. doi: 10.1038/s41586-021-04369-3. Epub 2022 Feb 14.
8
The pericyte: A critical cell in the pathogenesis of CADASIL.
Cereb Circ Cogn Behav. 2021;2:100031. doi: 10.1016/j.cccb.2021.100031.
9
Vascular K channel structural dynamics reveal regulatory mechanism by Mg-nucleotides.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2109441118.
10
Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System.
Annu Rev Physiol. 2022 Feb 10;84:331-354. doi: 10.1146/annurev-physiol-061121-040127. Epub 2021 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验