Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA.
Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA; email:
Annu Rev Physiol. 2022 Feb 10;84:331-354. doi: 10.1146/annurev-physiol-061121-040127. Epub 2021 Oct 21.
The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.
大脑血管长度的绝大多数由毛细血管组成,而我们对血流控制的理解仍不完整。本综述通过解决命名问题并借鉴活体光学成像和单细胞转录组学的新进展,综合了当前关于微血管区血流控制的知识。最近的研究强调了血管平滑肌细胞形态、基因表达和收缩动力学的重要区别,这可以解释在对血管活性介质的反应中观察到的动脉、过渡和毛细血管区之间的差异。动脉的平滑肌细胞和动脉-毛细血管过渡区的周细胞鞘控制着血流的大规模快速变化。相比之下,过渡区下游的毛细血管周细胞作用于较慢和较小的尺度,并参与建立静息毛细血管张力和血流异质性。仍有许多悬而未决的问题,包括在体内激活不同周细胞类型的血管活性介质、周细胞-内皮细胞通讯在将信号从毛细血管传导到动脉中的作用,以及神经疾病如何影响这些机制。