Suppr超能文献

设计的凹八面体异质结构解码上皮性卵巢肿瘤的不同代谢模式。

Designed Concave Octahedron Heterostructures Decode Distinct Metabolic Patterns of Epithelial Ovarian Tumors.

机构信息

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.

Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China.

出版信息

Adv Mater. 2023 May;35(18):e2209083. doi: 10.1002/adma.202209083. Epub 2023 Mar 27.

Abstract

Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn O /(Co,Mn)(Co,Mn) O (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.

摘要

上皮性卵巢癌(EOC)是一种与代谢途径改变相关的多因素过程。目前非常需要一种高性能的 EOC 筛选工具来改善预后结果,但仍未实现。在这里,开发了一种具有异质结、粗糙表面、中空内部和尖锐角的凹八面体 Mn O /(Co,Mn)(Co,Mn) O (MO/CMO) 复合材料,通过激光解吸/电离质谱 (LDI-MS) 记录卵巢肿瘤的代谢模式。MO/CMO 复合材料具有多种物理效应,可诱导增强的光吸收、优先的电荷转移、增加的光热转换和小分子的选择性捕获。与单增强或双增强对应物相比,MO/CMO 的信号增强约 2-5 倍,与商业化产品相比,信号增强约 10-48 倍。随后,通过 MO/CMO 辅助的 LDI-MS 揭示了卵巢肿瘤的血清代谢指纹图谱,实现了无需处理即可直接进行血清检测的高重现性。此外,代谢指纹图谱的机器学习可以区分恶性卵巢肿瘤和良性对照,曲线下面积值为 0.987。最后,筛选出与卵巢肿瘤进展相关的七种代谢物作为潜在的生物标志物。该方法为密集 MS 检测的最新基质描绘提供了指导,并加速了基于纳米材料的平台向精准诊断场景的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验