Valberg P A, Butler J P
Department of Environmental Science and Physiology, Harvard School of Public Health, Boston, Massachusetts 02115.
Biophys J. 1987 Oct;52(4):537-50. doi: 10.1016/S0006-3495(87)83243-5.
Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated.
人体组织并非铁磁性的,但铁磁性颗粒可能作为污染物存在,或者作为肺部及其他器官中的探针存在。这些颗粒的磁畴可通过瞬间施加外部磁场来排列;剩余磁场的大小和时间进程取决于磁性材料的数量以及颗粒运动的程度。对磁力测量数据的解释需要理解颗粒的磁化、团聚、随机运动以及响应磁场时的旋转和平移。我们阐述了与磁力测量相关的物理原理,并提出了由热、弹性或细胞力驱动的细胞内颗粒运动模型。描述了用于磁化细胞内颗粒和检测微弱剩余磁场的仪器的设计原理。此类磁性测量可用于对颗粒从体内清除情况或颗粒在身体组织和细胞内运动情况进行非侵入性研究。我们考虑并评估了这种实验方法固有的假设以及可能的假象来源。