Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
Sci Total Environ. 2023 May 1;871:162151. doi: 10.1016/j.scitotenv.2023.162151. Epub 2023 Feb 9.
The most important factor that restricts the decomposition of HO in the Fe/HO reaction is the slow cycling efficiency of reducing Fe to Fe. In this study, the addition of tungsten disulfide (WS) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of HO decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L) could be degraded by HO/Fe/WS system within 2.5 min. The conversion of Fe to Fe occurred mainly on the surface of WS due to the redox reaction of the exposed W active sites with Fe after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O) in the degradation of pollutants. WS showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe/HO and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs).
限制 HO 在 Fe/HO 反应中分解的最重要因素是还原 Fe 为 Fe 的循环效率缓慢。在这项研究中,添加二硫化钨 (WS) 作为共催化剂实现了反应限速步骤的快速循环,显著增强了 HO 的分解,从而有效降解了对乙酰氨基酚 (APAP)。结果表明,HO/Fe/WS 体系在 2.5 分钟内可将 5mg/L 的 APAP 降解 99.6%。由于暴露的 W 活性位点与 Fe 之间的氧化还原反应,以及不饱和 S 原子与质子结合后,Fe 向 Fe 的转化主要发生在 WS 的表面。电子顺磁共振 (EPR) 和自由基猝灭实验评估了羟基自由基 (•OH) 和超氧自由基 (O) 在污染物降解中的贡献。WS 在四次反应循环后表现出良好的可回收性。本研究为提高 Fe/HO 的效率提供了新的视角,并为过渡金属硫化物在高级氧化工艺 (AOPs) 中的参与提供了参考。