Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America; Dept. of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America.
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America; Philips, Gainesville, FL, United States of America.
Magn Reson Imaging. 2023 Jun;99:58-66. doi: 10.1016/j.mri.2023.02.001. Epub 2023 Feb 9.
Simultaneous mapping of triglyceride (TAG) saturation and tissue water relaxation may improve the characterization of the structure and function of anatomies with significant adipose tissue. While several groups have demonstrated in vivo TAG saturation imaging using MRI, joint mapping of relaxation and TAG saturation is understudied. Such mappings may avoid bias from physiological motion, if they can be done within a single breath-hold, and also account for static and applied magnetic field heterogeneity.
We propose a transient-state/MR fingerprinting single breath-hold sequence at 3 T, a low-rank reconstruction, and a parameter estimation pipeline that jointly estimates the number of double bonds (NDB), number of methylene interrupted double bonds (NMIDB), and tissue water T, while accounting for non-ideal radiofrequency transmit scaling and off-resonance effects. We test the proposed method in simulations, in phantom against MR spectroscopy (MRS), and in vivo regions in and around high fat fraction (FF) periclavicular adipose tissue. Partial volume and multi-peak transverse relaxation effects are explored.
The simulation results demonstrate accurate NDB, NMIDB, and water T estimates across a range of NDB, NMIDB, and T values. In phantoms, the proposed method's estimates of NDB and NMIDB correlate with those from MR spectroscopy (Pearson correlation ≥0.98), while the water T estimates are concordant with a standard phantom. The NDB and NMIDB are sensitive to partial volumes of water, showing increasing bias at FF < 40%. This bias is found to be due to noise and transverse relaxation effects. The in vivo periclavicular adipose tissue has high FF (>90%). The adipose tissue NDB and NMIDB, and muscle T estimates are comparable to those reported in the literature.
Robust estimation of NDB, NMIDB at high FF and water T across a broad range of FFs are feasible using the proposed methods. Further reduction of noise and model bias are needed to employ the proposed technique in low FF anatomies and pathologies.
同时绘制甘油三酯(TAG)饱和度和组织水弛豫图可能会改善对具有大量脂肪组织的解剖结构和功能的特征描述。尽管已有多个小组证明了使用 MRI 进行体内TAG 饱和度成像,但弛豫和 TAG 饱和度的联合测绘仍研究不足。如果可以在单次屏气中完成,这些测绘可以避免生理运动的偏差,并且还可以解释静态和应用磁场异质性。
我们在 3T 下提出了一种瞬态/MR 指纹单屏气序列、低秩重建和参数估计管道,该管道可以在考虑非理想射频发射标度和离频效应的情况下,同时估计双键数量(NDB)、亚甲基中断双键数量(NMIDB)和组织水 T。我们在模拟、磁共振波谱(MRS)对比的体模以及富含脂肪分数(FF)的锁骨周围脂肪组织的体内区域中测试了所提出的方法。探索了部分容积和多峰横向弛豫效应。
模拟结果表明,在 NDB、NMIDB 和 T 值的广泛范围内,NDB、NMIDB 和水 T 的估计值均准确。在体模中,所提出方法的 NDB 和 NMIDB 估计值与 MRS 的结果相关(Pearson 相关性≥0.98),而水 T 的估计值与标准体模一致。NDB 和 NMIDB 对水的部分容积敏感,在 FF<40%时表现出越来越大的偏差。这种偏差归因于噪声和横向弛豫效应。锁骨周围脂肪组织的 FF 较高(>90%)。脂肪组织的 NDB 和 NMIDB 以及肌肉 T 的估计值与文献报道的结果相当。
使用所提出的方法可以在高 FF 下对 NDB、NMIDB 进行稳健估计,并在较宽的 FF 范围内对水 T 进行估计。需要进一步降低噪声和模型偏差,以便将所提出的技术应用于低 FF 解剖结构和病理。