Huang Chia-Wei, Lee Kuang-Yung, Lin Peng-Tzu, Nian Fang-Shin, Cheng Haw-Yuan, Chang Chien-Hui, Liao Cheng-Yen, Su Yen-Lin, Seah Carol, Li Ching, Chen Yu-Fu, Lee Mei-Hsuan, Tsai Jin-Wu
Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.
Neuropathol Appl Neurobiol. 2023 Apr;49(2):e12890. doi: 10.1111/nan.12890.
Muscleblind-like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models.
To create Mbnl2 knockout neurons, cDNA encoding Cre-recombinase was delivered into neural progenitors of Mbnl2 mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two-photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis.
We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha-II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2.
MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis-splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis.
类肌肉失明蛋白2(MBNL2)在发育过程中调节可变剪接起着关键作用,小鼠中MBNL2缺失会重现强直性肌营养不良(DM)的脑表型。然而,脑发育过程中DM神经发病机制仍不清楚。在本研究中,我们旨在通过Mbnl2条件性敲除(CKO)小鼠模型研究MBNL2缺失对神经元发育的影响。
为了创建Mbnl2基因敲除神经元,通过子宫内电穿孔将编码Cre重组酶的cDNA导入Mbnl2小鼠脑的神经祖细胞中。从新生期到成年期,通过共聚焦显微镜和双光子显微镜监测脑切片和活体动物中树突棘的形态和动态。为了研究潜在的分子机制,我们进一步检测了与树突棘形成相关蛋白质的剪接和分子相互作用的变化。
我们发现,在青春期小鼠中,皮质神经元中Mbnl2基因敲除会降低树突棘密度和动态。Mbnl2缺失导致内收蛋白1(ADD1)异构体从成年型转变为胎儿型且发生移码,截短的ADD1无法与α-II血影蛋白(SPTAN1)相互作用,而α-II血影蛋白是树突棘形成的关键蛋白。此外,ADD1成年异构体的表达补偿了缺乏MBNL2的皮质神经元中降低的树突棘密度。
MBNL2在发育中的大脑中维持树突棘的动态和稳态方面起着关键作用。下游ADD1的错误剪接可能解释这些改变并导致DM脑发病机制。