Suppr超能文献

基于机器学习利用麻痹后面部联带运动患者耳肌表面肌电图检测眼睑闭合和微笑:一项可行性研究

Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study.

作者信息

Hochreiter Jakob, Hoche Eric, Janik Luisa, Volk Gerd Fabian, Leistritz Lutz, Anders Christoph, Guntinas-Lichius Orlando

机构信息

Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria.

MED-EL Elektromedizinische Geräte GmbH, 6020 Innsbruck, Austria.

出版信息

Diagnostics (Basel). 2023 Feb 2;13(3):554. doi: 10.3390/diagnostics13030554.

Abstract

Surface electromyography (EMG) allows reliable detection of muscle activity in all nine intrinsic and extrinsic ear muscles during facial muscle movements. The ear muscles are affected by synkinetic EMG activity in patients with postparalytic facial synkinesis (PFS). The aim of the present work was to establish a machine-learning-based algorithm to detect eyelid closure and smiling in patients with PFS by recording sEMG using surface electromyography of the auricular muscles. Sixteen patients (10 female, 6 male) with PFS were included. EMG acquisition of the anterior auricular muscle, superior auricular muscle, posterior auricular muscle, tragicus muscle, orbicularis oculi muscle, and orbicularis oris muscle was performed on both sides of the face during standardized eye closure and smiling tasks. Machine-learning EMG classification with a support vector machine allowed for the reliable detection of eye closure or smiling from the ear muscle recordings with clear distinction to other mimic expressions. These results show that the EMG of the auricular muscles in patients with PFS may contain enough information to detect facial expressions to trigger a future implant in a closed-loop system for electrostimulation to improve insufficient eye closure and smiling in patients with PFS.

摘要

表面肌电图(EMG)能够在面部肌肉运动期间可靠地检测出所有九块耳部固有肌和外在肌的肌肉活动。在面瘫后联动(PFS)患者中,耳部肌肉会受到联动性肌电图活动的影响。本研究的目的是通过使用耳廓肌肉表面肌电图记录表面肌电图(sEMG),建立一种基于机器学习的算法来检测PFS患者的眼睑闭合和微笑。纳入了16例PFS患者(10例女性,6例男性)。在标准化的闭眼和微笑任务期间,对双侧面部的耳前肌、耳上肌、耳后肌、颞肌、眼轮匝肌和口轮匝肌进行肌电图采集。使用支持向量机进行的机器学习肌电图分类能够从耳部肌肉记录中可靠地检测出闭眼或微笑,并与其他表情清晰区分。这些结果表明,PFS患者耳部肌肉的肌电图可能包含足够的信息来检测面部表情,从而为未来在闭环系统中植入电刺激装置以改善PFS患者闭眼和微笑不足提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ceb/9914547/76d5137d40e6/diagnostics-13-00554-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验