Suppr超能文献

排泄护理设备系统设计与自动检测方法研究

Research of System Design and Automatic Detection Method for Excretion Nursing Equipment.

作者信息

Hu Bingshan, Chen Zhiwei, Chen Xinyu, Lu Sheng, Su Yingbing, Yu Hongliu

机构信息

Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, China.

出版信息

Healthcare (Basel). 2023 Jan 29;11(3):388. doi: 10.3390/healthcare11030388.

Abstract

(1) Background: The nursing of the elderly has received more and more attention, especially the nursing of urination and defecation for the elderly. (2) Purpose: Design an excretion nursing equipment that can accurately identify and deal with urine and stool. (3) Methods: In this paper, based on the analysis of the requirements of excretion nursing equipment, a split mechanical design method and a modular control method are used to design the equipment. The Dempster-Shafer (D-S) evidence theory is used in the identification of urine and stool. (4) Results: The excretion nursing equipment designed in this paper works well according to functional test, and the success rate of stool and urine identification method using D-S evidence theory is 20% higher than that of traditional methods, reaching 90%. (5) Conclusions: The urine and stool recognition and detection algorithm based on the D-S evidence theory used in this paper can improve the recognition accuracy of traditional detection methods, and the designed excretion nursing equipment can realize the function of excretion care for patients.

摘要

(1) 背景:老年人护理受到越来越多的关注,尤其是老年人的排尿和排便护理。(2) 目的:设计一种能够准确识别和处理尿液和粪便的排泄护理设备。(3) 方法:本文在分析排泄护理设备需求的基础上,采用分体式机械设计方法和模块化控制方法进行设备设计。在尿液和粪便识别中运用了Dempster-Shafer(D-S)证据理论。(4) 结果:本文设计的排泄护理设备经功能测试运行良好,采用D-S证据理论的粪便和尿液识别方法成功率比传统方法高20%,达到90%。(5) 结论:本文采用的基于D-S证据理论的尿液和粪便识别检测算法能够提高传统检测方法的识别准确率,所设计的排泄护理设备能够实现对患者的排泄护理功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a40/9914074/1042bb860619/healthcare-11-00388-g001.jpg

相似文献

4
Ship Radiated Noise Recognition Technology Based on ML-DS Decision Fusion.基于 ML-DS 决策融合的舰船辐射噪声识别技术
Comput Intell Neurosci. 2021 Oct 7;2021:8901565. doi: 10.1155/2021/8901565. eCollection 2021.
10
Conflict management based on belief function entropy in sensor fusion.基于信念函数熵的传感器融合冲突管理
Springerplus. 2016 May 17;5:638. doi: 10.1186/s40064-016-2205-6. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验